Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, convolutional neural networks (CNNs) and self-attention mechanisms have been widely applied in plant disease identification tasks, yielding significant successes. Currently, the majority of research models for tomato leaf disease recognition rely solely on traditional convolutional models or Transformer architectures and fail to capture both local and global features simultaneously. This limitation may result in biases in the model’s focus, consequently impacting the accuracy of disease recognition. Consequently, models capable of extracting local features while attending to global information have emerged as a novel research direction. To address these challenges, we propose an Eff-Swin model that integrates the enhanced features of the EfficientNetV2 and Swin Transformer networks, aiming to harness the local feature extraction capability of CNNs and the global modeling ability of Transformers. Comparative experiments demonstrate that the enhanced model has achieved a further increase in training accuracy, reaching an accuracy rate of 99.70% on the tomato leaf disease dataset, which is 0.49~3.68% higher than that of individual network models and 0.8~1.15% higher than that of existing state-of-the-art combined approaches. The results show that integrating attention mechanisms into convolutional models can significantly enhance the accuracy of tomato leaf disease recognition while also offering the great potential of the Eff-Swin backbone with self-attention in plant disease identification.

Details

Title
Tomato Leaf Disease Classification by Combining EfficientNetv2 and a Swin Transformer
Author
Sun, Yubing; Ning, Lixin  VIAFID ORCID Logo  ; Zhao, Bin; Yan, Jun
First page
7472
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103889255
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.