Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plant-derived edible nanovesicles serve as crucial nanocarriers for targeted delivery of bioactive substances, including miRNAs and phytochemicals, to specific tissues. They have emerged as a significant focus in precision nutrient delivery research. In this study, Tartary-buckwheat-derived nanoparticles (TBDNs) were isolated and purified using a combination of differential centrifugation and PEG precipitation. A response surface test was employed to optimize the extraction process of TBDNs in terms of yield, total phenol and flavonoid content, as well as antioxidant activity. The results demonstrated that TBDNs exhibited the highest yield and activity at a 10% concentration of PEG, pH 5, and centrifugation temperature of 4 °C. Under these conditions, the measured yield of TBDNs was 1.7795 g/kg, with a total phenol content of 178.648 mg/100 g, total flavonoid content of 145.421 mg/100 g, and DPPH-radical-scavenging rate reaching 86.37%. Characterization through a transmission electron microscope and nanoparticle-size-tracking analyzer revealed that TBDNs possessed a teato-type vesicle structure with dispersed vesicle clusters present within them. Furthermore, the extracted TBDNs were found to have an average particle size of 182.8 nm with the main peak observed at 162.8 nm when tested for particle size distribution analysis. These findings provide a novel method for extracting TBDNs while laying the groundwork for future investigations into their activities.

Details

Title
Optimization and Characterization of PEG Extraction Process for Tartary Buckwheat-Derived Nanoparticles
Author
Zhang, Jiyue; Zhou, Chuang; Tan, Maoling; Cao, Yanan; Ren, Yuanhang; Peng, Lianxin
First page
2624
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097928930
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.