Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rapid urbanization leads to fragmentation and reduced connectivity of urban landscapes, endangering regional biodiversity conservation and sustainable development. Constructing a red, green, and blue spatial ecological network is an effective way to alleviate ecological pressure and promote economic development. Using circuit theory, hydrological analysis, and suitability analysis, this study constructs a composite ecological network under urban–rural integration. The results show the following: (1) A total of 22 ecological corridors with a length of 349.20 km, 22 ecological pinch points, and 22 ecological barrier points are identified in the municipal area, mainly distributed in Haidong Town. There are 504 stormwater corridors, which are more evenly distributed, 502 riverfront landscape corridors, and 130 slow-moving landscape corridors. (2) A total of 20 ecological corridors, with a length of 99.23 km, 19 ecological pinch points, and 25 barrier points were identified in the main urban area, and most of them are located in the ecological corridors. There are 71 stormwater corridors, mainly located in the northwestern forest area, 71 riverfront recreation corridors, and 50 slow-moving recreation corridors. (3) Two scales of superimposed ecological source area of 3.65 km2, and eleven ecological corridors, are primarily distributed between Erhai Lake and Xiaguan Town. There are two superimposed stormwater corridors and fourteen recreational corridors. The eco-nodes are mostly distributed in the east and south of Dali City; wetland nodes are mainly situated in the eighteen streams of Cangshan Mountain; and landscape nodes are more balanced in spatial distribution. The study results can provide a reference for composite ecological network construction.

Details

Title
Ecological Network Construction Based on Red, Green and Blue Space: A Case Study of Dali City, China
Author
Chen, Rong 1 ; Zhang, Shunmin 1 ; Huang, Xiaoyuan 2   VIAFID ORCID Logo  ; Li, Xiang 1 ; Peng, Jiansong 3 

 College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China; [email protected] (R.C.); [email protected] (S.Z.); [email protected] (X.L.) 
 College of Economics and Management, Southwest Forestry University, Kunming 650224, China; [email protected] 
 College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China 
First page
279
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097925100
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.