Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, many mobile edge computing network solutions have enhanced data privacy and security and built a trusted network mechanism by introducing blockchain technology. However, this also complicates the task-offloading problem of blockchain-enabled mobile edge computing, and traditional evolutionary learning and single-agent reinforcement learning algorithms are difficult to solve effectively. In this paper, we propose a blockchain-enabled mobile edge computing task-offloading strategy based on multi-agent reinforcement learning. First, we innovatively propose a blockchain-enabled mobile edge computing task-offloading model by comprehensively considering optimization objectives such as task execution energy consumption, processing delay, user privacy metrics, and blockchain incentive rewards. Then, we propose a deep reinforcement learning algorithm based on multiple agents sharing a global memory pool using the actor–critic architecture, which enables each agent to acquire the experience of another agent during the training process to enhance the collaborative capability among agents and overall performance. In addition, we adopt attenuatable Gaussian noise into the action space selection process in the actor network to avoid falling into the local optimum. Finally, experiments show that this scheme’s comprehensive cost calculation performance is enhanced by more than 10% compared with other multi-agent reinforcement learning algorithms. In addition, Gaussian random noise-based action space selection and a global memory pool improve the performance by 38.36% and 43.59%, respectively.

Details

Title
A Multi-Agent Reinforcement Learning-Based Task-Offloading Strategy in a Blockchain-Enabled Edge Computing Network
Author
Liu, Chenlei 1   VIAFID ORCID Logo  ; Sun, Zhixin 1   VIAFID ORCID Logo 

 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, New Mofan Road No. 66, Nanjing 210003, China; [email protected]; Post Big Data Technology and Application Engineering Research Center of Jiangsu Province, Nanjing University of Posts and Telecommunications, New Mofan Road No. 66, Nanjing 210003, China; Post Industry Technology Research and Development Center of the State Posts Bureau (Internet of Things Technology), Nanjing University of Posts and Telecommunications, New Mofan Road No. 66, Nanjing 210003, China 
First page
2264
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084962231
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.