Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The digital divide (DD) reflects the inequality of the digital economy, while existing research lacks a comprehensive framework for investigating the measurement of DD and its determinants. This study constructs a new framework with a five-dimensional comprehensive index system. City-level data are used to measure China’s DD index from 2010 to 2020 at the national, regional, and provincial levels. Furthermore, this study investigates the decomposition of DD at both regional and provincial levels and the determinants of DD from the perspectives of physical, human, and social capital. The key results are: (1) China’s DD has generally exhibited a fluctuating downward trend. While it remains high in the eastern and western regions, it has shown a decline year by year. However, the DD within most provinces is on the rise. (2) The intra-regional and inter-provincial are the primary drivers of changes in national DD, with both intra-regional and intra-provincial contribution rates on the rise. (3) Economic growth, infrastructure, foreign trade, education, and online interaction significantly impact DD, and these determinants may change at different periods. This study intends to provide empirical support for bridging the DD, fostering the balanced development of the digital economy, and reducing social inequality.

Details

Title
A New Framework, Measurement, and Determinants of the Digital Divide in China
Author
Zhou, Yuanren 1   VIAFID ORCID Logo  ; Chen, Menggen 2 ; Liu, Xiaojie 3   VIAFID ORCID Logo  ; Chen, Yun 3 

 School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 102206, China; [email protected] 
 School of Statistics, Beijing Normal University, Beijing 100875, China; [email protected] 
 College of Science, North China University of Technology, Beijing 100144, China; [email protected] 
First page
2171
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084962091
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.