Full Text

Turn on search term navigation

© 2024 Kiribou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Large gaps remain in our understanding of the vulnerability of specific animal taxa and regions to climate change, especially regarding extreme climate impact events. Here, we assess African apes, flagship and highly important umbrella species for sympatric biodiversity. We estimated past (1981–2010) and future exposure to climate change impacts across 363 sites in Africa for RCP2.6 and RCP6.0 for near term (2021–2050) and long term (2071–2099). We used fully harmonized climate data and data on extreme climate impact events from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). Historic data show that 171 sites had positive temperature anomalies for at least nine of the past ten years with the strongest anomalies (up to 0.56°C) estimated for eastern chimpanzees. Climate projections suggest that temperatures will increase across all sites, while precipitation changes are more heterogeneous. We estimated a future increase in heavy precipitation events for 288 sites, and an increase in the number of consecutive dry days by up to 20 days per year (maximum increase estimated for eastern gorillas). All sites will be frequently exposed to wildfires and crop failures in the future, and the latter could impact apes indirectly through increased deforestation. 84% of sites are projected to be exposed to heatwaves and 78% of sites to river floods. Tropical cyclones and droughts were only projected for individual sites in western and central Africa. We further compiled available evidence on how climate change impacts could affect apes, for example, through heat stress and dehydration, a reduction in water sources and fruit trees, and reduced physiological performance, body condition, fertility, and survival. To support necessary research on the sensitivity and adaptability of African apes to climate change impacts, and the planning and implementation of conservation measures, we provide detailed results for each ape site on the open-access platform A.P.E.S. Wiki.

Details

Title
Exposure of African ape sites to climate change impacts
Author
Razak Kiribou  VIAFID ORCID Logo  ; Tehoda, Paul; Chukwu, Onyekachi; Bempah, Godfred; Kühl, Hjalmar S; Ferreira, Julie; Sop, Tenekwetche  VIAFID ORCID Logo  ; Carvalho, Joana; Mengel, Matthias; Kulik, Lars; Jean Pierre Samedi Mucyo; Yntze van der Hoek; Heinicke, Stefanie  VIAFID ORCID Logo 
First page
e0000345
Section
Research Article
Publication year
2024
Publication date
Feb 2024
Publisher
Public Library of Science
e-ISSN
27673200
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069186125
Copyright
© 2024 Kiribou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.