Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Induction motors are widely applied in motor drive systems. Effective temperature monitoring is one of the keys to ensuring the reliability and optimal performance of the motors. Therefore, this paper introduces a multiplexed optical temperature sensing system for induction motors based on few-mode fiber (FMF) spatial mode diversity. By using the spatial mode dimension of FMF, fiber Bragg grating (FBG) carried by different spatial modes of optical paths is embedded in different positions of the motor to realize multipoint synchronous multiplexing temperature monitoring. The paper establishes and demonstrates a photonic lantern-based mode division sensing system for motor temperature monitoring. As a proof of concept, the system demonstrates experiments in multiplexed temperature sensing for motor stators using the fundamental mode LP01 and high-order spatial modes LP11, LP21, and LP02. The FBG sensitivity carried by the above mode is 0.0107 nm/°C, 0.0106 nm/°C, 0.0097 nm/°C, and 0.0116 nm/°C, respectively. The dynamic temperature changes in the stator at different positions of the motor under speeds of 1k rpm, 1.5k rpm, 2k rpm with no load, 3 kg load, and 5 kg load, as well as at three specific speed–load combinations of 1.5k rpm_3 kg, 1k rpm_0kg, 2k rpm_5 kg and so on are measured, and the measured results of different spatial modes are compared and analyzed. The findings indicate that different spatial modes can accurately reflect temperature variations at various positions in motor stator winding.

Details

Title
A Multiplexing Optical Temperature Sensing System for Induction Motors Using Few-Mode Fiber Spatial Mode Diversity
Author
Liu, Feng 1   VIAFID ORCID Logo  ; Gu, Tianle 1 ; Chen, Weicheng 2   VIAFID ORCID Logo 

 College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China; 22451841009@stu.wzu.edu.cn 
 College of Communication Engineering, Jilin University, Changchun 130012, China 
First page
1932
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059438696
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.