Content area
Abstract
Ce travail vise à développer des approches particulaires dans le but de simuler les écoulements à surface libre. Celles-ci s'inspirent des méthodes sans maillages, méthodes apparues durant ces deux dernières décennies, et présentant des avantages par rapport aux approches numériques standards. La première partie de la thèse est consacrée à présenter cette famille de méthodes dont quelques unes, des plus connues, sont détaillées. Les principaux avantages de ces méthodes ainsi que les plus importants défis à leur encontre seront énumérés.
Par la suite, la méthode SPH (Smoothed Particle Hydrodynamics) est utilisée pour simuler les écoulements à surface libre en utilisant le système de Saint-Venant homogène. Une étude mathématique variationnelle révèle que cette méthode aboutit à une formulation symétrique et donc numériquement instable. Le schéma obtenu est stabilisé par un décentrage (upwinding) qui consiste à introduire une viscosité artificielle. L'expression de cette viscosité est obtenue par une analogie avec les solveurs de Riemann. Cette technique de stabilisation conduit à des résultats probants où les chocs sont bien captés. Toutefois, un effet de lissage est observé au niveau des discontinuités probablement dû à l'absence de technique de type MUSCL dans le décentrage introduit. La méthode SPH, comme la majorité des méthodes sans maillage, possède une fonction de forme non-interpolante rendant difficile l'imposition des conditions aux limites. Ce problème est surmonté en adoptant une interpolation de type élément naturel. Une nouvelle méthode de type volumes finis a été présentée: La Méthode des Volumes Naturels (MVN). Cette méthode s'inspire de l'application de la méthode des éléments naturels en formulation Lagrangienne particulaire. Les flux sont évalués sur les cellules de Voronoï en utilisant la méthode des éléments naturels. Le schéma obtenu est un schéma centré donc instable. La même procédure de stabilisation adoptée pour la méthode SPH a été appliquée pour la MVN.
La MVN montre les mêmes avantages que la méthode SPH lorsqu'elle est appliquée en formulation Lagrangienne. De plus, le caractère interpolant de la fonction de forme de type éléments naturels, permet d'imposer aisément les conditions aux frontières de type Dirichlet. L'application de la MVN dans le cas des équations de Saint-Venant homogènes et ensuite non-homogènes (avec termes source) montre un bon potentiel de cette nouvelle méthode. Le terme source de type géométrique disparaît dans la formulation de type MVN Lagrangienne et les cas avec bathymétrie variable sont traités exactement comme les cas à bathymétrie nulle. Ainsi la profondeur d'eau est remplacée par le niveau de la surface libre. Le schéma obtenu vérifie la z-propriété et la C-propriété.