Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study focuses on optimizing federated learning in heterogeneous data environments. We implement the FedProx and a baseline algorithm (i.e., the FedAvg) with advanced optimization strategies to tackle non-IID data issues in distributed learning. Model freezing and pruning techniques are explored to showcase the effective operations of deep learning models on resource-constrained edge devices. Experimental results show that at a pruning rate of 10%, the FedProx with structured pruning in the MIT-BIH and ST databases achieved the best F1 scores, reaching 96.01% and 77.81%, respectively, which achieves a good balance between system efficiency and model accuracy compared to those of the FedProx with the original configuration, reaching F1 scores of 66.12% and 89.90%, respectively. Similarly, with layer freezing technique, unstructured pruning method, and a pruning rate of 20%, the FedAvg algorithm effectively balances classification performance and degradation of pruned model accuracy, achieving F1 scores of 88.75% and 72.75%, respectively, compared to those of the FedAvg with the original configuration, reaching 56.82% and 85.80%, respectively. By adopting model optimization strategies, a practical solution is developed for deploying complex models in edge federated learning, vital for its efficient implementation.

Details

Title
Edge Federated Optimization for Heterogeneous Data
Author
Hsin-Tung, Lin; Chih-Yu, Wen  VIAFID ORCID Logo 
First page
142
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046845844
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.