Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate estimating of above-ground biomass (AGB) of vegetation in urbanized areas is essential for urban ecosystem services. NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission can obtain precise terrestrial vegetation structure, which is very useful for AGB estimation in large forested areas. However, the spatial heterogeneity and sparse distribution of vegetation in urban areas lead to great uncertainty in AGB estimation. This study proposes a method for estimating vegetation heights by fusing GEDI laser observations with features extracted from optical images. GEDI is utilized to extract the accurate vegetation canopy height, and the optical images are used to compensate for the spatial incoherence of GEDI. The correlation between the discrete vegetation heights of GEDI observations and image features is constructed using Random Forest (RF) to obtain the vegetation canopy heights in all vegetated areas, thus estimating the AGB. The results in Xuzhou of China using GEDI observations and image features from Sentinel-2 and Landsat-8 satellites indicate that: (1) The method of combining GEDI laser observation data with optical images is effective in estimating AGB, and its estimation accuracy (R2 = 0.58) is higher than that of using only optical images (R2 = 0.45). (2) The total AGB in the shorter vegetation region is higher than the other two in the broadleaf forest and the coniferous forest, but the AGB per unit area is the lowest in the shorter vegetation area at 33.60 Mg/ha, and it is the highest in the coniferous forest at 46.60 Mg/ha. And the highest average AGB occurs in October–December at 59.55 Mg/ha in Xuzhou. (3) The near-infrared band has a greater influence on inverted AGB, followed by textural features. Although more precise information about vegetation should be considered, this paper provides a new method for the AGB estimation and also a way for the evaluation and utilization of urban vegetation space.

Details

Title
Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images
Author
Zhao, Xuedi 1 ; Hu, Wenmin 2   VIAFID ORCID Logo  ; Jiang, Han 1 ; Wei, Wei 1 ; Xu, Jiaxing 2   VIAFID ORCID Logo 

 The National Joint Engineering Laboratory of Internet Applied Technology of Mines, China University of Mining and Technology, Xuzhou 221116, China; [email protected] (X.Z.); [email protected] (J.H.); [email protected] (W.W.); [email protected] (J.X.); School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China 
 The National Joint Engineering Laboratory of Internet Applied Technology of Mines, China University of Mining and Technology, Xuzhou 221116, China; [email protected] (X.Z.); [email protected] (J.H.); [email protected] (W.W.); [email protected] (J.X.) 
First page
1229
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037630998
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.