It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The rapid expansion of the drone industry has resulted in a substantial increase in the number of low-altitude drones, giving rise to concerns regarding collision avoidance and countermeasure strategies among these unmanned aerial vehicles. These challenges underscore the urgent need for air-to-air drone target detection. An effective target detection model must exhibit high accuracy, real-time capabilities, and a lightweight network architecture to achieve a balance between precision and speed when deployed on embedded devices. In response to these requirements, we initially curated a dataset comprising over 10,000 images of low-altitude operating drones. This dataset encompasses diverse and intricate backgrounds, significantly enhancing the model’s training capacity. Subsequently, a series of enhancements were applied to the YOLOv5 algorithm to realize lightweight object detection. A novel feature extraction network, CF2-MC, streamlined the feature extraction process, while an innovative module, MG, in the feature fusion section aimed to improve detection accuracy and reduce model complexity. Concurrently, the original CIoU loss function was replaced with the EIoU loss function to further augment the model’s accuracy. Experimental results demonstrate an enhancement in the accuracy of drone target detection, achieving mAP values of 95.4% on the UAVfly dataset and 82.2% on the Det-Fly dataset. Finally, real-world testing conducted on the Jetson TX2 revealed that the YOLOv5s-ngn model achieved an average inference speed of 14.5 milliseconds per image. The code utilized in this paper can be accessed via https://github.com/lucien22588/yolov5-ngn.git.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Civil Aviation Flight University of China, School of Air Traffic Management, Guanghan, China (GRID:grid.464258.9) (ISNI:0000 0004 1757 4975)