It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In addition to the physics program with proton beams, the Large Hadron Collider (LHC) at CERN also provides collisions of fully-stripped Pb beams for about one month per year. When colliding Pb nuclei, electromagnetic interactions are the dominating processes because of the intense Coulomb field produced by the ions. These ’ultra-peripheral’ interactions give rise to ions with a changed magnetic rigidity. This causes losses in the machine that can impose limits on the luminosity. Among them, the bound-free pair production (BFPP) causes a localised power deposition downstream of each collision point, which could induce superconducting magnet quenches if not well controlled. These losses were studied and successfully mitigated for most LHC experiments, however the recent request by LHCb to increase the Pb-Pb luminosity requires a revision of BFPP collisional loss limitations. In this paper, the simulation of BFPP losses from Pb-Pb collisions around LHCb is presented. The loss patterns are discussed for different beam parameters. Finally, a mitigation strategy by means of an orbit bump is studied.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 CERN , Esplanade des Particules 1, 1217 Meyrin , Switzerland
2 CERN , Esplanade des Particules 1, 1217 Meyrin , Switzerland; The University of Manchester , Oxford Rd, Manchester M13 9PL , UK
3 Warsaw University of Technology , Pl. Politechniki 1, 00-661 Warsaw , Poland