Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In dynamic environments, convolutional neural networks (CNNs) often produce image feature maps with significant redundancy due to external factors such as moving objects and occlusions. These feature maps are inadequate as precise image descriptors for similarity measurement, hindering loop closure detection. Addressing this issue, this paper proposes feature compression of convolutional neural network output. The approach is detailed as follows: (1) employing ResNet152 as the backbone feature-extraction network, a Siamese neural network is constructed to enhance the efficiency of feature extraction; (2) utilizing KL transformation to extract principal components from the backbone network’s output, thereby eliminating redundant information; (3) employing the compressed features as input for NetVLAD to construct a spatially informed feature descriptor for similarity measurement. Experimental results demonstrate that, on the New College dataset, the proposed improved method exhibits an approximately 9.98% enhancement in average accuracy compared to the original network. On the City Center dataset, there is an improvement of approximately 2.64%, with an overall increase of about 23.51% in time performance. These findings indicate that the enhanced ResNet152 performs better than the original network in environments with more moving objects and occlusions.

Details

Title
Loop Closure Detection Based on Compressed ConvNet Features in Dynamic Environments
Author
Jiang, Shuhai 1 ; Zhou, Zhongkai 1   VIAFID ORCID Logo  ; Sun, Shangjie 1 

 College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; [email protected] (Z.Z.); [email protected] (S.S.); Institute of Intelligent Control and Robotics (IICR), Nanjing Forestry University, Nanjing 210037, China 
First page
8
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912614275
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.