Full Text

Turn on search term navigation

© 2024. This work is published under http://www.expresspolymlett.com/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, the potential use of nanocrystalline cellulose (CNC) modified epoxy nanocomposite as a matrix is investigated for both glass and carbon fiber-reinforced composites. Various amounts of CNCs (1, 2, 4, and 6 wt%) were added to bisphenol A diglycidyl ether-based epoxy resin (DGEBA), and the optimum CNC loading was detennined as 4 wt% in tenns of mechanical and thennal properties. Compared to the reference sample containing a neat epoxy matrix with the obtained carbon fiber/CNC-epoxy (CNC/epoxy/CF) and glass fiber/CNC-epoxy (CNC/epoxy/GF) hybrid nanocomposites, significant improvements have been detennined in the in-plane shear modulus and strength, and flexural modulus, respectively. The mechanical properties improvements of CNC/epoxy/CF hybrid composites are approximately 0.9% higher than the CNC/epoxy/GF hybrid composites. Additionally, the distribution of CNC in hybrid nanocomposites is also investigated by scanning and transmission electron microscopies. It is noted that the homogenous dispersion of CNCs in the epoxy matrix and their diameters varied from 10 to 100 nm are detected at higher magnification.

Details

Title
Improving the mechanical properties of fiber-reinforced polymer composites through nanocellulose-modified epoxy matrix
Author
Kuyumcu, Mustafa 1 ; Kurtulus, Cenk 1 ; Ciftci, Mustafa 2 ; Tasdelen, Mehmet Atilla 1 

 Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University, 77200 Yalova, Turkey 
 Department of Chemistry, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey 
Pages
61-71
Section
Research article
Publication year
2024
Publication date
Jan 2024
Publisher
Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering
e-ISSN
1788618X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2894974396
Copyright
© 2024. This work is published under http://www.expresspolymlett.com/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.