Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to improve the dielectric thermal stability of polyvinylidene fluoride (PVDF)-based film, nano silicon nitride (Si3N4) was introduced, and hence the energy storage performance was improved. The introduction of nano Si3N4 fillers will induce a phase transition of P(VDF-HFP) from polar β to nonpolar α, which leads to the improved energy storage property. As such, the discharging energy density of Si3N4/P(VDF-HFP) composite films increased with the amount of doped Si3N4. After incorporating 10wt% Si3N4 in Si3N4/P(VDF-HFP) films, the discharging density increased to 1.2 J/cm3 under a relatively low electric field of 100 MV/m. Compared with a pure P(VDF-HFP) film, both the discharging energy density and thermal dielectric relaxor temperature of Si3N4/P(VDF-HFP) increased. The working temperature increased from 80 °C to 120 °C, which is significant for ensuring its adaptability in high-temperature energy storage areas. Thus, this result indicates that Si3N4 is a key filler that can improve the thermal stability of PVDF-based energy storage polymer films and may provide a reference for high-temperature capacitor materials.

Details

Title
Introduction of Nanoscale Si3N4 to Improve the Dielectric Thermal Stability of a Si3N4/P(VDF-HFP) Composite Film
Author
Guan, Jing; Cheng, Laifei; Ye, Fang
First page
4264
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888354672
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.