Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we introduce a cutting-edge system that leverages state-of-the-art deep learning methodologies to generate high-quality synthetic thermal face images. Our unique approach integrates a thermally fine-tuned Stable Diffusion Model with a Vision Transformer (ViT) classifier, augmented by a Prompt Designer and Prompt Database for precise image generation control. Through rigorous testing across various scenarios, the system demonstrates its capability in producing accurate and superior-quality thermal images. A key contribution of our work is the development of a synthetic thermal face image database, offering practical utility for training thermal detection models. The efficacy of our synthetic images was validated using a facial detection model, achieving results comparable to real thermal face images. Specifically, a detector fine-tuned with real thermal images achieved a 97% accuracy rate when tested with our synthetic images, while a detector trained exclusively on our synthetic data achieved an accuracy of 98%. This research marks a significant advancement in thermal image synthesis, paving the way for its broader application in diverse real-world scenarios.

Details

Title
Advanced Deep Learning Techniques for High-Quality Synthetic Thermal Image Generation
Author
Pavez, Vicente; Hermosilla, Gabriel  VIAFID ORCID Logo  ; Silva, Manuel  VIAFID ORCID Logo  ; Farias, Gonzalo  VIAFID ORCID Logo 
First page
4446
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888351884
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.