Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Because of the counterintuitive imaging and confusing interpretation dilemma in Synthetic Aperture Radar (SAR) images, the application of deep learning in the detection of SAR targets has been primarily limited to large objects in simple backgrounds, such as ships and airplanes, with much less popularity in detecting SAR vehicles. The complexities of SAR imaging make it difficult to distinguish small vehicles from the background clutter, creating a barrier to data interpretation and the development of Automatic Target Recognition (ATR) in SAR vehicles. The scarcity of datasets has inhibited progress in SAR vehicle detection in the data-driven era. To address this, we introduce a new synthetic dataset called Mix MSTAR, which mixes target chips and clutter backgrounds with original radar data at the pixel level. Mix MSTAR contains 5392 objects of 20 fine-grained categories in 100 high-resolution images, predominantly 1478 × 1784 pixels. The dataset includes various landscapes such as woods, grasslands, urban buildings, lakes, and tightly arranged vehicles, each labeled with an Oriented Bounding Box (OBB). Notably, Mix MSTAR presents fine-grained object detection challenges by using the Extended Operating Condition (EOC) as a basis for dividing the dataset. Furthermore, we evaluate nine benchmark rotated detectors on Mix MSTAR and demonstrate the fidelity and effectiveness of the synthetic dataset. To the best of our knowledge, Mix MSTAR represents the first public multi-class SAR vehicle dataset designed for rotated object detection in large-scale scenes with complex backgrounds.

Details

Title
Mix MSTAR: A Synthetic Benchmark Dataset for Multi-Class Rotation Vehicle Detection in Large-Scale SAR Images
Author
Liu, Zhigang; Luo, Shengjie; Wang, Yiting
First page
4558
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869612226
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.