Full Text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Phase change materials have garnered extensive interest in heat harvesting and utilization owing to their high energy storage density and isothermal phase transition. Nevertheless, inherent leakage problems and low heat storage efficiencies hinder their widespread utilization. Nature has served as a great source of inspiration for addressing these challenges. Natural strategies are proposed to achieve advanced thermal energy management systems, and breakthroughs are made in recent years. This review focuses on recent advances in the structural design and functions of phase change materials from a natural perspective. By highlighting the structure–function relationship, advanced applications including human motion, medicine, and intelligent thermal management devices are discussed in detail. Finally, the views on the remaining challenges and future prospects are also provided, that is, phase change materials are advancing around the biomimicry design spiral.

Details

Title
Advanced Phase Change Materials from Natural Perspectives: Structural Design and Functional Applications
Author
Liu, Lu 1 ; Zhang, Yuang 1 ; Zhang, Shufen 1 ; Tang, Bingtao 1   VIAFID ORCID Logo 

 State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, P. R. China 
Section
Reviews
Publication year
2023
Publication date
Aug 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2845396742
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.