Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, water-soluble peptide (WSP) fractions of cheddar cheese made with Lactobacillus helveticus 1.0612 were purified into WSP-Ⅰ (<3 kDa), WSP-Ⅱ (3–10 kDa), and WSP-Ⅲ (>10 kDa). The protective effects of WSP, WSP-Ⅰ, WSP-Ⅱ, and WSP-Ⅲ fractions against oxidative stress in Caco-2 cells were assayed, and the cytoprotective mechanism of WSP-Ⅰ on cells oxidative damage was elucidated via metabolomics. The results showed that all four peptide fractions were able to attenuate the decrease in cell viability caused by oxidative stress and also could reduce the production of reactive oxygen species and malondialdehyde caused by oxidative stress, and increased cellular catalase and superoxide dismutase activities, thereby enhancing cellular antioxidant capacity. The WSP-Ⅰ fraction with the highest protective effect was used for metabolomics analysis, and 15 significantly different metabolites were screened. Functional pathway analysis revealed that the protective effect of the WSP-I fraction was related with nine metabolic pathways and weakened the metabolic disorders caused by H2O2 via regulating energy metabolism and amino acid metabolism. All in all, peptide fractions of cheddar cheese showed a cytoprotective effect through improved cellular metabolism.

Details

Title
The Peptide Fractions of Cheddar Cheese Made with Lactobacillus helveticus 1.0612 Play Protective Effects in H2O2-Induced Oxidative-Damaged Caco-2 Cells Models
Author
Yang, Wanshuang 1 ; Zhang, Xiuxiu 1 ; Sun, Meng 1 ; Jiao, Yang 1 ; Li, Xiaodong 2   VIAFID ORCID Logo  ; Liu, Lu 3 ; Wang, Zhong 1 

 College of Food Science, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., Harbin 150030, China[email protected] (Z.W.); Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., Harbin 150030, China 
 College of Food Science, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., Harbin 150030, China[email protected] (Z.W.) 
 Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., Harbin 150030, China 
First page
2790
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843054421
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.