Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rubber (Hevea brasiliensis Muell.) plantations are among the most critical agricultural ecosystems in tropical regions, playing a vital role in regional carbon balance. Accurate large-scale biomass estimation for these plantations remains a challenging task due to the severe signal saturation problem. Recent advances in remote sensing big data, cloud platforms, and machine learning have facilitated the precise acquisition of key physiological variables, such as stand age (A) and canopy height (H), which are critical parameters for biomass estimation but have been underutilized in prior studies. Using Hainan Island—the second-largest rubber planting base in China—as a case study, we integrated extensive ground surveys, maps of stand age and canopy height, remote sensing indicators (RSIs), and geographical and climate indicators (ECIs) to ascertain the optimal method for estimating rubber plantation biomass. We compared different inputs and estimation approaches (direct and indirect) using the random forest algorithm and analyzed the spatiotemporal characteristics of rubber plantation biomass on Hainan Island. The results indicated that the traditional model (RSIs + ECIs) had low accuracy and significant estimation bias (R2 = 0.24, RMSE = 38.36 mg/ha). The addition of either stand age or canopy height considerably enhance model accuracy (R2 = 0.77, RMSE ≈ 21.12 mg/ha). Moreover, incorporating the DBH obtained through indirect inversion yielded even greater predictive accuracy (R2 = 0.97, RMSE = 7.73 mg/ha), outperforming estimates derived from an allometric equation model input with the DBH (R2 = 0.67, RMSE = 25.43 mg/ha). However, augmenting the model with stand age, canopy height, or their combination based on RSIs, ECIs, and DBH only marginally improved the accuracy. Consequently, it is not recommended in scenarios with limited data and computing resources. Employing the optimal model, we generated biomass maps of rubber plantations on Hainan Island for 2016 and 2020, revealing that the spatiotemporal distribution pattern of the biomass is closely associated with the establishment year of the rubber plantations. While average biomass in a few areas has undergone slight decreases, total biomass has exhibited significant growth, reaching 5.46 × 107 mg by the end of 2020, underscoring its considerable value as a carbon sink.

Details

Title
Comparison of Different Important Predictors and Models for Estimating Large-Scale Biomass of Rubber Plantations in Hainan Island, China
Author
Li, Xin 1 ; Wang, Xincheng 2 ; Gao, Yuanfeng 2 ; Wu, Jiuhao 1 ; Cheng, Renxi 1 ; Ren, Donghao 1 ; Bao, Qing 1 ; Ting Yun 1   VIAFID ORCID Logo  ; Wu, Zhixiang 3   VIAFID ORCID Logo  ; Xie, Guishui 3 ; Chen, Bangqian 3   VIAFID ORCID Logo 

 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China[email protected] (Y.G.); 
 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China[email protected] (Y.G.); ; Rubber Research Institute (RRI), Chinese Academy of Tropical Agricultural Sciences (CATAS), Hainan Danzhou Agro-Ecosystem National Observation and Research Station, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou 571101, China 
 Rubber Research Institute (RRI), Chinese Academy of Tropical Agricultural Sciences (CATAS), Hainan Danzhou Agro-Ecosystem National Observation and Research Station, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou 571101, China 
First page
3447
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836484213
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.