Abstract

Nowadays, the electro-electronic industry and scientific community have a great interest in improving memory devices. A candidate is the bismuth ferrite owing to the coexistence of ferroelectricity and anti-ferromagnetism at room temperature, however, a high leakage current harms their ferroelectric properties. Thus, bismuth ferrite and barium titanate solutions improve the ferroelectric properties of bismuth ferrite and optimize the magnetoelectric coupling factor. This system is called multiferroic, materials exhibit the coexistence of ferromagnetic, ferroelectric, or ferro-elastic orders, which is of interest to the scientific physics community and electronic industry. In this paper, bismuth ferrite-barium titanate system around the morphotropic phase boundary was studied and analyzed. It was observed changes in the structural properties in function of barium titanate content. Calcination temperature was determined from thermogravimetric analysis curves to powders of bismuth ferrite-barium titanate system. Ceramic bodies were densified conventionally. Archimedes’ method was used for density measure. Ceramics with densities greater than 95% were obtained. 93% of the perovskite phase was obtained from structural results. Finally, structural properties were presented and analyzed using Mossbauer spectroscopy as complementary technique. These analyses are very important in solid state physics because to contribute to understanding the phenomenology and synthesis process of multiferroic materials.

Details

Title
Bismuth ferrite-barium titanate system studies around morphotropic phase boundary
Author
Amaya, S 1 ; Perez, J 2 ; Colorado, H 3 ; Echavarria, A 2 ; Londoño, F A 1 

 Instituto de Física, Universidad de Antioquia , Medellín , Colombia 
 Instituto de Química, Universidad de Antioquia , Medellín , Colombia 
 Departamento de Ingenieria Mecánica, Universidad de Antioquia , Medellín , Colombia 
First page
012002
Publication year
2023
Publication date
May 2023
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2821965829
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.