Abstract/Details

Flexural Behavior of Composite FRP-Concrete-Steel Poles

Krasniqi, Krenar.   The University of Alabama at Birmingham ProQuest Dissertations & Theses,  2023. 30420216.

Abstract (summary)

A new composite pole is being developed. The pole consists of an outer fiber reinforced polymer (FRP) shell, inside steel tube, and concrete filled between the two tubes (The composite FRP-concrete-steel pole is hereafter referred to as CFCSP). The FRP tube used in this research is produced using a centrifugal casting technique with glass-fibers oriented in the longitudinal and hoop direction. The longitudinal fibers provide flexural resistance to the section, whereas the hoop fibers confine the concrete and give shear resistance to the pole. The steel tube acts as longitudinal reinforcement, and the concrete is confined by the two tubes. Steel and concrete are two materials that have been considered economical in construction for several decades. Steel provides a ductile behavior in tension, whereas concrete is brittle with high compressive strength but low tensile strength. The greatest advantage of the composite poles is their excellent corrosion resistance because the FRP is highly resistant to corrosion while the inside steel tube is protected by the FRP tube and the concrete core. The ends of the steel tube can be sealed with welded steel plates to protect the hollow steel core. Another advantage of the composite FRP-concrete-steel pole is the light weight because the inner void reduces the redundant weight, and the hollow core provides space for cabling and electricity. Therefore, it would be promising to combine these materials in an optimal manner to produce the most economical and beneficial composite pole.

This research work presents the investigation on the flexural behavior of composite FRP-concrete-steel poles (CFCSPs). The flexural behavior of these poles was evaluated in terms of load-deflection curves, ultimate moment capacities, and load-strain response. The previously mentioned terms were evaluated at 1st service load (25% of predicted ultimate load), 2nd service load (50% of predicted ultimate load), and ultimate load. An analytical model was developed to accurately predict the behavior of composite FRP-concrete-steel poles. Prototype specimens were manufactured and tested to better understand the flexural behavior of the composite poles and verify the analytical model.


Indexing (details)


Subject
Civil engineering;
Materials science
Classification
0543: Civil engineering
0794: Materials science
Identifier / keyword
Bending test; Composite members; Concrete-filled tubes; Fiber-reinforced polymer; Flexural behavior
Title
Flexural Behavior of Composite FRP-Concrete-Steel Poles
Author
Krasniqi, Krenar
Number of pages
161
Publication year
2023
Degree date
2023
School code
0005
Source
MAI 84/11(E), Masters Abstracts International
ISBN
9798379505158
Advisor
Fouad, Fouad H.; Sherif, Muhammad
Committee member
Waldron, Christopher
University/institution
The University of Alabama at Birmingham
Department
Civil Engineering
University location
United States -- Alabama
Degree
M.S.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
30420216
ProQuest document ID
2811380039
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
https://www.proquest.com/docview/2811380039