Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Perovskite-based solar cells are a promising photovoltaic technology capable of offering higher conversion efficiency at low costs compared with the standard of the market. They can be produced via a thin film technology that allows for considerable environmental sustainability, thus representing an efficient, sustainable, flexible, and light solution. Tandem solar cells represent the next step in the evolution of photovoltaics (PV). They promise higher power conversion efficiency (PCE) than those currently dominating the market. The tandem solar cell design overcomes the limitations of single junction solar cells by reducing the thermal losses as well as the manufacturing costs. Perovskite has been employed as a partner in different kinds of tandem solar cells, such as the Si and CIGS (copper indium gallium selenide) based cells that, in their tandem configuration with perovskite, can convert light more efficiently than standalone sub-cells. This brief review presents the main engineering and scientific challenges in the field. The state-of-the-art three main perovskite tandem technologies, namely perovskite/silicon, perovskite/CIGS, and perovskite/perovskite tandem solar cells, will be discussed, providing a side-by-side comparison of theoretical and experimental efficiencies of multijunction solar cells.

Details

Title
All-Perovskite Tandem Solar Cells: From Certified 25% and Beyond
Author
Nour El Islam Boukortt 1   VIAFID ORCID Logo  ; Triolo, Claudia 2   VIAFID ORCID Logo  ; Santangelo, Saveria 2   VIAFID ORCID Logo  ; Patanè, Salvatore 3   VIAFID ORCID Logo 

 Electronics and Communication Engineering Department, Kuwait College of Science and Technology, Road N. 7, Doha 13113, Kuwait 
 Dipartimento di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali (DICEAM), Università “Mediterranea”, Via Zehender, Loc. Feo di Vito, 89122 Reggio Calabria, Italy; National Reference Center for Electrochemical Energy Storage (GISEL), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy 
 National Reference Center for Electrochemical Energy Storage (GISEL), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy; Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy 
First page
3519
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806540107
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.