Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

SMAF-ECC material composed of shape memory alloy fiber (SMAF) and engineered cementitious composite (ECC) has good bending and tensile properties, as well as good crack self-healing ability, energy consumption, and self-centering ability. The bond behavior between fiber and matrix is crucial to the effective utilization of the superelasticity of SMAF. The experimental study considered three variables: SMA fiber diameter, fiber end shape, and bond length. The pullout stress–strain curve of SMAF was obtained, and the maximum pullout stress, maximum bond stress, and fiber utilization rate were analyzed. Compared with the straight end and the hook end, the maximum pullout stress of the specimen using the knotted end SMAF is above 900 MPa, the fiber undergoes martensitic transformation, and the fiber utilization rate is above 80%, indicating that the setting of the knotted end can give full play to the superelasticity of the SMAF. Within the effective bond length range, increasing the bond length can increase the maximum anchorage force of the knotted end SMAF. Increasing the fiber diameter can increase the maximum pullout stress and maximum anchoring force of the knotted end SMAF but reduce the utilization rate of SMA fiber. This study provides a reliable theoretical basis for the bonding properties between SMAF and ECC.

Details

Title
Bonding Mechanical Properties between SMA Fiber and ECC Matrix under Direct Pullout Loads
Author
Zhao, Yang 1   VIAFID ORCID Logo  ; Gong, Xiaojun 2 ; Wu, Qing 2 ; Lin, Fan 2 

 School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China 
 School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China 
First page
2672
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799659560
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.