Full Text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Natural language processing of medical records offers tremendous potential to improve the patient experience. Sentiment analysis of clinical notes has been performed with mixed results, often highlighting the issue that dictionary ratings are not domain specific. Here, for the first time, we re-calibrate the labMT sentiment dictionary on 3.5M clinical notes describing 10,000 patients diagnosed with lung cancer at the Department of Veterans Affairs. The sentiment score of notes was calculated for two years after date of diagnosis and evaluated against a lab test (platelet count) and a combination of data points (treatments). We found that the oncology specific labMT dictionary, after re-calibration for the clinical oncology domain, produces a promising signal in notes that can be detected based on a comparative analysis to the aforementioned parameters.

Details

Title
Sentiment analysis of medical record notes for lung cancer patients at the Department of Veterans Affairs
Author
Elbers, Danne C  VIAFID ORCID Logo  ; La, Jennifer; Minot, Joshua R; Gramling, Robert; Brophy, Mary T; Do, Nhan V; Fillmore, Nathanael R; Dodds, Peter S; Danforth, Christopher M
First page
e0280931
Section
Research Article
Publication year
2023
Publication date
Jan 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2769575574
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.