Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Net ecosystem productivity (NEP) is an important indicator for estimating regional carbon sources/sinks. The study focuses on a comprehensive computational simulation and spatiotemporal variation study of the NEP in the Yellow River basin from 2000 to 2020 using NPP data products from MODIS combined with a quantitative NEP estimation model followed by a comprehensive analysis of the spatiotemporal variation characteristics and dynamic procession persistence analysis based on meteorological data and land use data. The results show that: (1) The total NEP in the Yellow River basin had an overall increasing trend from 2000 to 2020, with a Theil–Sen trend from −23.37 to 43.66 gCm−2a−1 and a mean increase of 4.64 gCm−2a−1 (p < 0.01, 2-tailed). (2) Most areas of the Yellow River basin are carbon sink areas, and the annual average NEP per unit area was 208.56 gCm−2a−1 from 2000 to 2020. There were, however, substantial spatial and temporal variations in the NEP. Most of the carbon source area was located in the Kubuqi Desert and its surroundings. (3) Changes in land use patterns were the main cause of changes in regional NEP. During the 2000–2020 period, 1154.24 t of NEP were added, mainly due to changes in land use, e.g., the conversion of farmland to forests and grasslands. (4) The future development in 83.43% of the area is uncertain according to the Hurst index dynamic persistence analysis. In conclusion, although the carbon−sink capacity of the terrestrial ecosystem in the Yellow River basin is increasing and the regional carbon sink potential is increasing in the future, the future development of new energy resources has regional uncertainties, and the stability of the basin ecosystem needs to be enhanced.

Details

Title
Spatiotemporal Variation Characteristics and Dynamic Persistence Analysis of Carbon Sources/Sinks in the Yellow River Basin
Author
Zhang, Kun 1   VIAFID ORCID Logo  ; Zhu, Changming 1   VIAFID ORCID Logo  ; Ma, Xiaodong 1 ; Zhang, Xin 2   VIAFID ORCID Logo  ; Yang, Dehu 1 ; Shao, Yakui 3 

 School of Geography, Geomatics, and Planning, Jiangsu Normal University, Xuzhou 221116, China 
 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China 
 Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China 
First page
323
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767301452
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.