Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tor is widely used to protect users’ privacy, which is the most popular anonymous tool. Tor introduces multiple pluggable transports (PT) to help users avoid censorship. A number of traffic analysis methods have been devoted to de-anonymize these PT. Snowflake is the latest PT based on the WebRTC protocol and DTLS encryption protocol for peer-to-peer communication, differing from other PT, which defeat these traffic analysis methods. In this paper, we propose a Snowflake traffic identification framework, which can identify whether the user is accessing Tor and which hidden service he is visiting. Rule matching and DTLS handshake fingerprint features are utilized to classify Snowflake traffic. The linear interpolation of the accumulative payload length of the first n messages in the DTLS data transmission phase as additional features are extracted to identify the hidden service. The experimental results show that our identification framework F-ACCUMUL can effectively identify Tor-Snowflake traffic and Tor-Snowflake hidden service traffic.

Details

Title
F-ACCUMUL: A Protocol Fingerprint and Accumulative Payload Length Sample-Based Tor-Snowflake Traffic-Identifying Framework
Author
Chen, Junqiang 1 ; Cheng, Guang 1 ; Hantao Mei 1 

 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Security for Ubiquitous Network, Nanjing 211189, China; Purple Mountain Laboratories, Nanjing 211189, China 
First page
622
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761137940
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.