It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the early stages of engineering design, multitudes of feasible designs can be generated using structural optimization methods by varying the design requirements or user preferences for different performance objectives. Data mining such potentially large datasets is a challenging task. An unsupervised data-centric approach for exploring designs is to find clusters of similar designs and recommend only the cluster representatives for review. Design similarity can be defined not only on a purely functional level but also based on geometric properties, such as size, shape, and topology. While metrics such as chamfer distance measure the geometrical differences intuitively, it is more useful for design exploration to use metrics based on geometric features, which are extracted from high-dimensional 3D geometric data using dimensionality reduction techniques. If the Euclidean distance in the geometric features is meaningful, the features can be combined with performance attributes resulting in an aggregate feature vector that can potentially be useful in design exploration based on both geometry and performance. We propose a novel approach to evaluate such derived metrics by measuring their similarity with the metrics commonly used in 3D object classification. Furthermore, we measure clustering accuracy, which is a state-of-the-art unsupervised approach to evaluate metrics. For this purpose, we use a labeled, synthetic dataset with topologically complex designs. From our results, we conclude that Pointcloud Autoencoder is promising in encoding geometric features and developing a comprehensive design exploration method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer