Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The architecture, engineering, construction, and operation (AECO) industry is evolving rapidly. In particular, technological advancements and lessons learned from the COVID-19 pandemic are shaping the industry’s future. Various artificial intelligence (AI), building information modeling (BIM), and Internet of Things (IoT) techniques have contributed to the industry’s modernization by enabling more self-reliable, self-automated, self-learning, time-saving, and cost-effective processes throughout the various life cycle phases of a smart building or city. As a result, the concept of digital twins (DTs) has recently emerged as a potential solution to optimize the AECO sector to achieve the required cyber-physical integration, particularly following the pandemic. Based on a systematic review, the study develops and proposes theoretical models that examine the evolution of DTs in the context of BIM, cutting-edge technologies, platforms, and applications throughout the project’s life cycle phases. This study demonstrates DTs’ high potential as a comprehensive approach to planning, managing, predicting, and optimizing AECO projects that will achieve more Sustainable Development Goals (SDGs). However, while DTs offer many new opportunities, they also pose technical, societal, and operational challenges that must be addressed.

Details

Title
Evolution of BIM to DTs: A Paradigm Shift for the Post-Pandemic AECO Industry
Author
Megahed, Naglaa A  VIAFID ORCID Logo  ; Hassan, Asmaa M  VIAFID ORCID Logo 
First page
67
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
24138851
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756812592
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.