Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polyvinyl alcohol (PVA) is a safe and biodegradable polymer. Given the unique physical and chemical properties of PVA, we physically cross-linked PVA with kaolin (K) and cedar essential oil (Ced) using the freeze-thawing approach to fabricate PVA/Ced/K sponge hydrogels as hemostatic, antibacterial, and antioxidant wound healing materials. The physicochemical characteristics of PVA/Ced/K hydrogels, including water swelling profiles and gel fractions, were surveyed. Additionally, the functional groups of hydrogels were explored by Fourier transform infrared spectroscopy (FTIR), while their microstructures were studied using scanning electron microscopy (SEM). Furthermore, the thermal features of the hydrogels were probed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Evidently, alterations in cedar concentrations resulted in significant variations in size, water uptake profiles, and hydrolytic degradation of the hydrogels. The incorporation of cedar into the PVA/K endowed the hydrogels with significantly improved antibacterial competency against Bacillus cereus (B. cereus) and Escherichia coli (E. coli). Moreover, PVA/Ced/K exhibited high scavenging capacities toward ABTS•+ and DPPH free radicals. Beyond that, PVA/Ced/K hydrogels demonstrated hemocompatibility and fast blood clotting performance in addition to biocompatibility toward fibroblasts. These findings accentuate the prospective implementation of PVA/Ced/K composite hydrogel as a wound dressing.

Details

Title
Influence of Cedar Essential Oil on Physical and Biological Properties of Hemostatic, Antibacterial, and Antioxidant Polyvinyl Alcohol/Cedar Oil/Kaolin Composite Hydrogels
Author
Tamer, Tamer M 1   VIAFID ORCID Logo  ; Sabet, Maysa M 2 ; Zahrah A H Alhalili 3 ; Ismail, Ahmed M 4 ; Mohy-Eldin, Mohamed S 1   VIAFID ORCID Logo  ; Hassan, Mohamed A 5   VIAFID ORCID Logo 

 Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt 
 Central Laboratory, Faculty of Agriculture, Ain Sham University, Cairo 11241, Egypt 
 Department of Chemistry, Faculty of Sciences and Arts in Sajir, Shaqra University, Dawadmi 11912, Saudi Arabia 
 Basic Science Department-Arab Academy for Science, Technology and Maritime Transport, Aswan Branch, Aswan 81511, Egypt 
 Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany 
First page
2649
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756780202
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.