Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

(1) Imaging of pharmaceutical compounds in tissue is an increasingly important subsection of Mass Spectrometry Imaging (MSI). Identifying proper target engagement requires MS platforms with high sensitivity and spatial resolution. Three prominent categories of drugs are small molecule drugs, antibody-drug conjugate payloads, and protein degraders. (2) We tested six common MSI platforms for their limit of detection (LoD) on a representative compound for each category: a Matrix-Assisted Laser Desorption/Ionization (MALDI) Fourier Transform Ion Cyclotron, a MALDI-2 Time-of-Flight (ToF), a MALDI-2 Trapped Ion Mobility Spectrometry ToF, a Desorption Electrospray Ionization Orbitrap, and 2 Atmospheric Pressure-MALDI Triple Quadrupoles. Samples were homogenized tissue mimetic models of rat liver spiked with known concentrations of analytes. (3) We found that the AP-MALDI-QQQ platform outperformed all 4 competing platforms by a minimum of 2- to 52-fold increase in LoD for representative compounds from each category of pharmaceutical. (4) AP-MALDI-QQQ platforms are effective, cost-efficient mass spectrometers for the identification of targeted analytes of interest.

Details

Title
Evaluation of Quantitative Platforms for Single Target Mass Spectrometry Imaging
Author
Bowman, Andrew P  VIAFID ORCID Logo  ; Sawicki, James; Talaty, Nari N; Buck, Wayne R; Yang, Junhai; Wagner, David S
First page
1180
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728520271
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.