It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
CRISPR and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR–Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted, in Physcomitrium patens, a comprehensive genome-wide investigation of off-target mutations using either a CRISPR–Cas9 or a TALEN strategy. We observed a similar number of differences for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and did not lead to transgene integration. The PEG treatment, a well-established biotechnological method, in itself, was the main source of mutations found in the edited plants.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details









1 Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France (GRID:grid.418453.f) (ISNI:0000 0004 0613 5889)
2 CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia (GRID:grid.413322.5) (ISNI:0000 0001 2188 8254)
3 Community Plant Variety Office (CPVO), Angers, France (GRID:grid.413322.5)