Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Graphene is a unique attractive material owing to its characteristic structure and excellent properties. To improve the preparation efficiency of graphene, reduce defects and costs, and meet the growing market demand, it is crucial to explore the improved and innovative production methods and process for graphene. This review summarizes recent advanced graphene synthesis methods including “bottom-up” and “top-down” processes, and their influence on the structure, cost, and preparation efficiency of graphene, as well as its peeling mechanism. The viability and practicality of preparing graphene using polymers peeling flake graphite or graphite filling polymer was discussed. Based on the comparative study, it is potential to mass produce graphene with large size and high quality using the viscoelasticity of polymers and their affinity to the graphite surface.

Details

Title
Graphene Synthesis: Method, Exfoliation Mechanism and Large-Scale Production
Author
Liu, Naixu 1   VIAFID ORCID Logo  ; Tang, Qingguo 1 ; Huang, Bin 1 ; Wang, Yaping 1 

 Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; [email protected] (N.L.); [email protected] (B.H.); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China 
First page
25
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621280919
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.