Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Future infectious disease outbreaks are inevitable; therefore, it is critical that we maximize our readiness for these events by preparing effective public health policies and healthcare innovations. Although we do not know the nature of future pathogens, antigen-agnostic platforms have the potential to be broadly useful in the rapid response to an emerging infection—particularly in the case of vaccines. During the current COVID-19 pandemic, recent advances in mRNA engineering have proven paramount in the rapid design and production of effective vaccines. Comparatively, however, the development of new adjuvants capable of enhancing vaccine efficacy has been lagging. Despite massive improvements in our understanding of immunology, fewer than ten adjuvants have been approved for human use in the century since the discovery of the first adjuvant. Modern adjuvants can improve vaccines against future pathogens by reducing cost, improving antigen immunogenicity, and increasing antigen stability. In this perspective, we survey the current state of adjuvant use, highlight potentially impactful preclinical adjuvants, and propose new measures to accelerate adjuvant safety testing and technology sharing to enable the use of “off-the-shelf” adjuvant platforms for rapid vaccine testing and deployment in the face of future pandemics.

Details

Title
Novel Vaccine Adjuvants as Key Tools for Improving Pandemic Preparedness
Author
Pogostin, Brett H  VIAFID ORCID Logo  ; McHugh, Kevin J  VIAFID ORCID Logo 
First page
155
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2601993867
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.