1. Introduction
Every discipline is expanding its frontier and multiple disciplinary approaches have become essential to solve complex problems. This leads to the study of a large number of constructs of interests simultaneously. These constructs may have been identified in theory or practice. Warfield [1,2,3,4] in the 1970’s developed a technique to establish an interrelationship model between variables known as interpretive structural modeling (ISM). The holistic picture of important constructs in the structured form derived from ISM technique helps the practitioners to solve the problem effectively. This technique is widely used due to its simplistic procedure and profound value addition in problem solving in different domains.
ISM helps in representing partial, fragmented, and distributed knowledge into integrated, interactive, and actionable knowledge. This technique is therefore particularly useful for the areas that are inherently multidisciplinary, such as sustainability. The discipline of sustainability ensures the performance in three areas: economic, social, and environmental, termed as triple bottom line (TBL) [5], while the world undergoes development. Additionally, the literature shows the maximum number of applications of this technique in the area of sustainability.
The search with the quoted keywords of “interpretive structural modeling” on the single database of Scopus yielded 5184 documents. There is an exponential growth in the usage of this technique from 2007 onward; prior to this year articles are around 10 each year starting from 1974. For the year 2007, 46 documents are listed and the numbers are exponentially increasing each successive year to 1200 documents in the year of 2020. With around 36% contribution in articles, India is leading the application of ISM, followed by China, USA, UK, and Iran. Together these five countries contribute around 71% of total articles. This technique is being used in many disciplines in decreasing order, namely business, engineering, computer science, decision science, environmental science, social science, and others.
ISM helps in modeling the variables and brings out the existing interrelationship structure among them. It helps a group of people or decision makers to debate and share their knowledge and achieve consensus on the relationships among the variables. The participants can share their views without any knowledge of mathematical complexity involved in the underlying steps. A computerized program may automate all the graphical and algebraic computation and convert their inputs into a pictorial model consisting of variables along with the relationships among them. The ISM process does not add any information [6] but brings in structural value [7].
In the same time period of the 1970’s, another technique known as MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to classification)) was developed by J. C. Duperrin and M. Godet [8]. MICMAC helps in classification of the variables into one of the four categories, namely dependent, independent, linkage, and autonomous variables. ISM coupled with MICMAC becomes a strong tool to visualize the structure of variables along with the interrelationships between them. ISM is also used in several multi criteria decision making (MCDM) techniques such as analytical hierarchy process (AHP) [9], analytic network process (ANP) [10,11,12], technique for order of preference by similarity to ideal solution (TOPSIS) [13,14], decision-making trial, evaluation laboratory (DEMATEL) [15,16], and others.
Implementation of this technique and conduction of brainstorming sessions with experts in previous studies [17,18] led to identification of some key challenges such as variables’ identification, selection of decision makers and method of decision making, and unavailability of end-to-end software for ISM and MICMAC. Furthermore, the literature shows erroneous applications of steps of ISM such as wrong reachability matrix [19,20,21,22], wrong transitivity calculations [9,13,16,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37], incorrect level partitioning and wrong structure of the model [31,38,39,40,41,42], and incorrect addition [11,14,43,44,45,46,47,48] or reduction [49,50,51,52] of edges affecting the reachability of variables. An error in an earlier step generally leads to an error in subsequent steps. Similarly, the wrong calculation of transitivity leads to wrong MICMAC diagrams. Therefore, there exists some important issues in implementation of this technique, namely identification of variables, decision makers, expertise and experience of decision makers, method of decision making, and computerization of the steps of ISM. Previous ISM reviews [53,54,55] don’t critically analyze the steps of ISM applications in the articles. Similarly, although some automation of the ISM technique has been provided earlier [56,57], there does not exist any end-to-end graphical software that may help in applying this technique and allow the decision makers to focus on sharing knowledge and iterate the ISM technique until a high-confidence consensus model is arrived at. These challenges set the objectives of this research as follows:
Development of SmartISM, a software tool for ISM and MICMAC using Microsoft Excel and VBA.
Scoping review of applications of ISM on existing studies to identify application domains, types and numbers of variables studied, composition of decision makers, decision making and data collection techniques, and accuracy of ISM application using SmartISM.
The remainder of the paper is organized into the following sections: literature review, research methodology, development of SmartISM using Microsoft Excel, results, discussion, and conclusion.
2. Literature Review
There are numerous studies in the literature that illustrate the ISM technique. They can be summarized into the seven steps approach with an additional eighth step for MICMAC analysis, as given in the following subsection. The next subsection illustrates the existing available automation of the ISM. The last subsection presents some studies that have reviewed the implementations of ISM.
2.1. ISM and MICMAC Techniques
The interpretive structural modelling (ISM) can be defined as constructs’ directional structuring technique based on contextual interrelationships defined by domain experts, utilizing computerized conversion of relations into a pictorial model using matrix algebra and graph theory. It may be explained in the series of steps as follows, which will assist in automating all the processes of the ISM technique.
2.1.1. Elements or Constructs or Variables
Identification of elements or constructs of the subject being studied is the most important of all activities. Similarly, the establishment of their definition along with the theoretical boundaries or scope is very critical. Elements must be explained with the details of their definition, objectives, and possible indications or measurements. These elements are generally identified by literature review, expert opinions, and/or surveys. Some of the unique approaches have been use of thematic analysis [58], upper echelon theory [11], contingency theory [59], content analysis [52], strengths, weaknesses, opportunities, and threats (SWOT) analysis [30], idea engineering workshop [40,60], and Delphi technique [37,61]. One study [42] has defined the source, understanding, and interpretation for each variable.
2.1.2. Decision Makers (DMs)
DMs play a very significant role in ISM as the whole process and outcome are dependent upon their input. There are three important aspects for the selection of a group of DMs such as size, expertise, and diversity. The group of DMs should be representative of all of the stakeholders in the domain of the problem. They should have sound experience of domain and expert level knowledge of variables being studied. The literature shows the number of DMs ranging between 2 [62,63] to 120 [64] with a median value of 11, and very few studies [16,30,41,65] have taken DMs from academia, industry, and government together.
2.1.3. Structural Self-Interaction Matrix (SSIM)
Elements or constructs are interrelated with one of the four relations such as x influences y, y influences x, x and y mutually influence each other, or x and y are unrelated. These relations are almost universally represented by ‘V’, ‘A’, ‘X’, and ‘O’ characters respectively in the SSIM. These relationships are assigned by DMs based on contextual relationships during pairwise comparison on variables. The number of comparisons is nC2 (mathematical combination), where n is the number of variables in the domain of study. Finally, an n by n matrix is formed with nC2 cells filled with A, V, X, and O symbols and the remaining cells are blank. Most studies have used these standard symbols except few such as [35]. As this is the basic matrix and required for all other steps therefore has been documented in most of the studies except few such as [15,66].
2.1.4. Reachability Matrix (RM) and Final Reachability Matrix (FRM)
RM is the representation of SSIM in binary form. V, A, X, and O symbols of SSIM are replaced with 1, 0, 1, and 0, digits respectively. At their transposed positions by row with column and column with row, 0, 1, 1, and 0 digits are placed, respectively. The constructs are assumed to influence self, so ones are placed at the diagonal positions. The resultant RM is checked for transitive relations. Transitivity is the basic assumption in the ISM such as if variable x influences y and y influences z then x will influence z transitively. This is second-order or two-hop transitivity whereas generalized transitivity means x is related to z through one or more variables. The transitive relations hence identified are represented in the RM with 1*s to distinguish from original 1s and the resulting matrix is known as FRM. FRM also consists of driving and dependence powers of each variable by counting 1s and 1*s in rows and columns respectively. Very few studies mention usage of some software for transitivity calculations such as [56,57]. However, one of the most frequent reasons for incorrect ISM calculations have been wrong transitivity calculations, such as in studies [9,13,16,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37]. Therefore, this study proposes the use of an established Warshall algorithm [67] for transitivity calculations.
2.1.5. Level Partitioning
This is a very important step to develop the hierarchical directional structure among the variables. Reachability, antecedent, and intersection sets are derived for all the variables from the FRM. For a specific variable, a reachability set consists of itself and all the variables it influences, and an antecedent set consists of itself and all the variables influencing it. Thereafter, the intersection set of reachability and antecedent set is calculated. Variables having the same reachability and intersection sets are given the top rank and are removed for the next iteration and the process is repeated until all variables are ranked. Some studies such as [31,38,39,40,41,42] in the literature had incorrect leveling for variables.
2.1.6. Conical Matrix (CM) and Digraph
CM is row and column wise ordered FRM based on ranks or levels of variables identified in the level partitioning step. Further the levels of each variable are also recorded at the end of row and column in CM. This matrix helps in drawing the digraph to get the first visual output of the hierarchical directional structure of variables. Circular nodes are drawn with variable numbers. Further they are connected with directional edges based upon 1s or 1*s in the CM between pairs of variables. Fewer studies have mentioned CM and digraph [12,20,27,35,65,68,69,70], as the digraph resembles the final model with a lesser number of edges. The importance of the digraph further goes down in automatic calculation of transitivity.
2.1.7. Reduced Conical Matrix (RCM) and Final ISM Model
Digraph is converted into a final model by replacing the node numbers with names of the variables and representing nodes in the rectangular shapes. Moreover, efforts are made to remove maximum edges from digraph while maintaining the levels and structure of variables and reachability of variables. This is done to improve the readability of the final model. Several studies have committed mistakes at this step either by adding extra edges [11,14,43,44,45,46,47,48] or omitting edges [49,50,51,52] that have affected the reachability of the variables. Therefore, a new algorithm, reduced conical matrix (RCM), has been devised to remove maximum possible edges without affecting structure and reachability of variables, as explained in the fourth section. This RCM is used for making the final ISM model. The final model may further be subjected to validations by different means such as review by DMs, interviews from different sets of participants, or statistical validations.
2.1.8. MICMAC
MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to classification)) in the simplest terms is a variable classification technique. Variables are mapped onto a two-dimensional grid based on their dependence and driving power values, represented on horizontal and vertical axes respectively. The range of these values is between 1 and total number of variables and the axes are bifurcated at mid-points, resulting in four quadrants numbered anti clockwise. These quadrants classify variables into autonomous, dependent, linkage, and independent categories. The autonomous variables are not connected with the remaining system of variables whereas linkage variables are sensitive and strongly connected with independent and dependent variables. The final hierarchical ISM model coupled with the MICMAC analysis greatly improves the understanding of variables. Therefore, most studies have carried out MICMAC analysis except few such as [19,39,47,71,72].
2.2. Implementation of ISM
As originally proposed by Warfield [1,2,3,4], the ISM requires its steps to be executed with the assistance of a computer [6]. Some of the more recent studies demonstrate specialized software or routines being developed for ISM. The article [56] mentions the development of the ISM software package in R software. This software package takes the SSIM input in the comma separated (.csv) excel file and provides two outputs in excel file format, namely, “ISM_Matrix” for FRM step to incorporate transitivity calculations and “ISM_Output” for partitioning step to identify the levels of the variables. Similarly, some studies such as [57] have used MATLAB software to calculate the FRM and partitioning steps. The previous studies have attempted to automate FRM and partitioning steps, leading to partial automation of ISM. As pointed out earlier in absence of automation, the final model may introduce errors in edges regardless of correct FRM and leveling, leading to wrong reachability of variables. Further, having all the steps being carried out automatically shows the prompt results to researchers and decision makers for further possible iterations. Therefore, there exists a need to develop an end-to-end graphical software to implement ISM and MICMAC and identify the required algorithms for it.
2.3. Assessment of ISM Applications
The ISM technique is being applied in a range of domains [53,54,55]. The review article [54] provides 10 different application domains for ISM. It further provides additional parameters such as integration with other MCDM approaches. Similarly the review article [55] identified ISM applications in 14 domains without industry or organizations, 20 industrial sectors, and 4 other areas. Furthermore, among other characteristics, it mentions integration with other MCDM approaches, and the presence of constructs for cost and/or quality. These reviews haven’t focused on operationalization of ISM technique. Therefore, there exists a gap to identify the methodology of steps of applications of ISM in the existing articles such as nature and number of variables, compositions of DMs, decision making and data collection techniques, and accuracy of ISM results.
3. Research Methodology
This study addresses two objectives, firstly the development of SmartISM for the implementation of ISM, as explained in the following section. The second objective is the scoping review of literature to identify the scope of ISM and MICMAC applications and the assessment of applications of ISM using SmartISM tool. For the scoping review the five-step framework of Denyer and Tranfield (2009) [73] has been adopted as explained in the following paragraphs, Figure 1. The review process also generated the data necessary for the assessment of application of ISM using SmartISM.
Step I: Question formulation: Formulating questions requires identification of context, interventions, mechanisms, and outcomes. In this study, context is considered to be domain, and decision makers; interventions are variables of interest in problem domain; mechanisms are techniques for data collection from DMs; and outcomes are the ISM outputs and MICMAC diagram. In essence there will be the following research questions that will help in addressing the second objective of this study.
-
What are the different domains and sub-domains of ISM applications?
-
What are the different types and numbers of variables being studied?
-
What are the compositions of DMs in different studies?
-
What are the different decision making and data collection techniques?
-
How accurate has been the application of ISM technique, using SmartISM?
Step II: Locating Studies: As the ISM based studies are huge, only quality sources were considered, rather than an exhaustive search. As per the objectives, articles that had significant discussion and documentation on ISM application as mentioned in Step I were needed. As defined earlier, the steps of ISM are structural self-interaction matrix, initial and final reachability matrix, level partitioning, conical matrix, digraph, and final model. It was observed that an article going into the details of level partitioning had sufficient demonstration of ISM. Therefore, “Interpretive Structural Modeling” + partitioning keywords were used on ScienceDirect database and it resulted in 300 articles up to the year of 2021, of which 291 belonged to review and research articles.
Step III: Study selection and evaluation: These articles were further perused for the relevance to present study and classified into different groups such as definition only, other techniques, no partitioning, non-related, incomplete outputs, and desired study. As the articles were growing nonlinearly each year, therefore, after the year of 2017, a random selection of five articles was preferred to keep the dataset manageable. It resulted in 77 articles in the desired study group that were considered further in this study.
Step IV: Analysis and Synthesis: This step has two components: first the analysis of articles for context, interventions, and mechanisms was performed, as explained in step one, by extracting relevant information as shown in Table 2. Second was the extraction of SSIM from the 77 selected articles to reimplement the ISM technique using SmartISM. The results from the SmartISM were compared with the outcomes illustrated in the article for SSIM, RM, FRM, LP, CM, digraph, final model and edges in the final model, and MICMAC and the variations are summarized in Table 3.
Step V: Reporting and using the results: Results of analysis and synthesis are reported in results and discussion section. They have been provided in a fashion that will assist in informed-adoption and application of ISM and MICMAC, and utilization of SmartISM for academicians, practitioners, and policy makers alike.
Articles’ Details
Articles’ publication years range from 2005 to 2021. As the articles are increasing non-linearly, therefore 2017 onwards only five articles were randomly chosen for each year. The publication sources having two or more articles have been shown in Table 1. Journals in the area of sustainability have the maximum number of articles. Journal of cleaner production had published 18 articles out of 77 selected articles.
4. Development of SmartISM Using Microsoft Excel
Microsoft Excel provides an excellent environment for graphical representation and modelling of virtually any conceptual framework of any discipline. It has some important features such as cellular addressable input sheets, interactive output, vector graphic objects, integral atomic access of data in multiple ways, many inbuilt data processing functions, backend VBA (Visual Basic for Applications) interface to code any logic or algorithm, mechanisms for development of event driven interfaces, ubiquitous tool and ease of use, and widespread ecosystem of support and training. Hence it makes a natural choice for practitioners, decision makers, and researchers to develop their problem-solving models in Microsoft Excel. Its applications in business statistics and decision making are widely documented. Following are some advanced applications of MS Excel in different domains such as Genetic Analysis [74], Finite Element Analysis in Engineering [75], and Pharmacokinetic Pharmacodynamic fields of Pharmacology [76]. On the flip side it has a drawback to support multiple real-time concurrent users. This section explains the functions and features of VBA to develop SmartISM, an end-to-end graphical software to automate processes of ISM and MICMAC with the help of pseudo codes. Additionally, the demonstration video for SmartISM has been attached as a Supplementary Material, see Video S1.
Firstly, the SSIM matrix defined by DMs is entered in Excel, and serves as the basic input for other steps of ISM. For n variables, the size of SSIM will be n by n. DMs will compare n(n + 1)/2 or nC2 unique pairs of variables and assign one of the relationships using symbols V, A, X, or O, as explained earlier. Thereafter, eight VBA macros will derive matrices of RM, FRM, CM, and RCM; level partitioning; and draw diagrams of digraph, final model, and MICMAC. RM is a binary form of SSIM using conversion rules for V, A, X, and O as explained earlier and keeping 1s at the diagonal positions of the matrix, as described in the following pseudo code. RM also contains the driving and dependence powers for each variable.
Function RM |
//copy the content of SSIM into RM |
RM ← SSIM |
//loops to replace V, A, X and O symbols with 1, 0, 1 and 0, digits; and putting 0,1, 1 //and 0 digits at their transposed positions; and keeping the diagonal elements as 1 |
For i = 1 To n //n is the total number of elements |
For j = 1 To n |
If i = j |
RM[i][j] ← 1 |
If RM[i][j] = ‘V’ |
RM[i][j] ← 1 |
RM[j][i] ← 0 |
If RM[i][j] = ‘A’ |
RM[i][j] ← 0 |
RM[j][i] ← 1 |
If RM[i][j] = ‘X’ |
RM[i][j] ← 1 |
RM[j][i] ← 1 |
If RM[i][j] = ‘O’ |
RM[i][j] ← 0 |
RM[j][i] ← 0 |
//count non-zero elements in rows and columns and append to show the driving and //dependence powers |
For i = 1 To n |
RM[i][n + 1] ← Countif(RM[i][] != 0) |
RM[n + 1][i] ← Countif(RM[][i] != 0) |
The second function FRM requires calculation of transitive relations among variables. For manual calculation, RM can be visualized as a digraph with variables representing nodes and 1s in the RM representing the directed edges. By tracing different paths, transitive relations can be identified. For a large number of variables the process would be tedious and leads to errors, whereas a simple Warshall algorithm [67] for transitive closure can be used to automate it. This algorithm results in generalized transitivity if applied in-place, otherwise it will give second-order or two-hop transitivity. Transitive relations are marked with 1* in FRM, see the pseudo code for main logic in the following paragraph. Moreover, the 1s and 1*s are counted in rows and columns to calculate the driving and dependence powers respectively for each variable.
Function FRM |
The next step is to calculate the ranks of the variables through level partitioning. A new matrix LP is defined with five columns namely elements (Mi), reachability set R(Mi), antecedent set A(Mi), intersection set R(Mi)∩A(Mi) and level, and n rows. For a specific variable Mi in FRM, non-zero cells in the row comprise its reachability set and their corresponding identifiers are kept in the LP row of the same variable Mi. Similarly, non-zero cells in the column comprise its antecedent set and their corresponding identifiers are kept in the LP row of the same variable Mi. The intersection sets are calculated for all variables and variables having the same reachability and intersection sets are given first rank. In the next iteration, identifiers of all the ranked variables are removed from reachability, antecedent, and intersection sets. Again, variables having the same reachability and intersection sets are given the second rank and iteration continues until all the variables are ranked. The iteration results may be copied in one Microsoft Excel Sheet.
Function LP |
Once the variables are ranked, a digraph can be developed easily by positioning the variables as per their ranks with the help of CM. CM is row and column wise sorted FRM as per variables’ ranks or levels. Directed edges can be drawn between variables as per non-zero cells in the CM. Two shape objects Oval and Connector are needed to automate the drawing of digraph. Positing of ovals needs to be carefully assigned, as there can be multiple ovals in one level. The simplest way to identify the needed objects in drawing is to auto record a macro and draw a sample. Afterwards, the macro can be manually edited and static names of the objects can be made dynamic for easy handling in the loop structures of VBA. The pseudo codes for the functions for CM and digraph is as follows.
Function CM |
Function Digraph |
The final model represents variable names in the rectangular boxes in place of their identifiers in ovals and tries to remove maximum possible transitive links from the digraph. Transitive reduction is a technique to reduce the number of transitive links. Transitive reduction is complicated, specifically for the directed cyclic graphs, and the algorithm may even distort the structure of the digraph. Therefore, an algorithm was designed to develop a reduced conical matrix (RCM) that removes maximum links without changing the structure of digraph and reachability of elements. The main logic is to remove incoming links from second lower-level variables from the CM and results in RCM, see the pseudo code for the main logic in the following paragraph. RCM was used to draw automated final ISM model using Rectangle and Connector shape objects, as in the following pseudo code.
Function RCM |
Function FinalModel |
Lastly, a macro was written to draw a MICMAC diagram. The basic input for this diagram was the dependence and driving powers of variables from FRM. This was the longest macro as it required many shape objects such as Line, Connector, Rectangle, Oval, and Textbox. However, it didn’t require any special algorithm to be used. Nevertheless, logic to initiate, aggregate, and draw different objects based on number of variables, and dependence and driving powers in a specified space, required careful arrangement.
Function MICMAC |
The SmartISM software was extensively tested on studies available in the literature. For any discrepancy between the reported results in the study and the SmartISM, steps were manually verified to validate the results of SmartISM, as shown in Table 3. The sample results of SmartISM for one of the previous studies [77] that had no discrepancy are shown in Figure 2, Figure 3, Figure 4 and Figure 5.
5. Results
This section presents the scoping review answers to the questions described in the research methodology section with respect to domain of ISM applications, variables of study, composition of decision makers, decision making, and data collection techniques, as summarized in Table 2. Furthermore, the results of the assessment of ISM technique using SmartISM on the selected 77 papers are summarized in Table 3.
5.1. Domain of Study
ISM is being applied in numerous fields such as sustainability, social sciences, management, engineering, and information technology. The results show 21 different domains, with highest studies in sustainability (32), supply chain and logistics (13), information technology (9), energy (5), human resource (3), marketing (3), and operations (3) (Table 2). Within sustainability, the highest studies are in the area of green supply chain management (GSCM) and sustainable supply chain management (SSCM) with seven studies each followed by two studies in construction [40,58] and several other areas such as e-waste recycling [16], healthcare waste [13], recycling 3D printing waste [47], green IT/IS [11], among others. In the area of supply chain and logistics, studies have focused on supplier relationship [9] and selection [44], food SCM [24,25], e-procurement [72], and reverse logistics [14,62,84], among others. In the field of information technology studies are conducted in the areas of building information modeling [21,93], cloud computing [37,52], e-commerce security [19], m-commerce [96], enterprise resource planning [45], supply chain management [94], and social networking sites [95]. Energy domain studies were in the area of bio-diesel [68], smart grid technologies [60], and solar energy [79]. For the human resource domain, two studies were in the area of occupational health and safety [83,89] and one in team performance [88]. The studies in the marketing area focused on motivation [39], retail brand [39], and app-based retailing [97]. Furthermore, the articles in the area of operations focused on maintenance [35,36] and lean manufacturing [12]. Some of the innovative areas were landfill communities [31], emission trading system [92], tour value [66], and quality of passenger interaction process [51].
5.2. Variables of Study
Most studies focus on enablers or drivers, challenges or barriers, critical success factors, and influencing or significant elements in the domain of research (Table 2). Other studies have tried to explore different sets of variables. For example, article [84] has studied seven attributes of third party reverse logistics; article [39] has studied 17 motivational factors in the marketing area; article [44] has used 9 corporate social responsibility factors in the area supplier selection; article [85] has studied 25 SSCM practices; article [35] interrelated maintenance tools and technique; article [11] explored 13 psychological drivers of motivation in the area of green IT/IS; article [95] studied the interrelationships between 12 factors for abandoning social networking sites; article [29] studied capabilities and drivers for new product development; and article [30] studied 13 strategies for renewable energy. The number of variables being studied ranged from 5 [58] to 32 [20]. Additionally, some studies explored two types of factors such as 10 barriers and 10 enablers [15] and 14 barriers and 15 benefits [72]. One study gave variables in two applications such as 8 CSFs for roads and bridges and 10 CSFs for embarkment [40]. These variables are identified mostly through literature review, experts’ opinions, and/or survey. Some of the unique approaches used to identify variables are thematic analysis [58], upper echelon theory [11], contingency theory [59], content analysis [52], best worst method [28], SWOT (strength, weakness, opportunity, and threat) analysis [30], idea engineering workshop [40,60], and Delphi technique [37,61].
5.3. Domain Experts or Decision Makers
This is the most crucial step as it provides the input for further steps. There are two important aspects, namely, selection of decision makers (DM) and method of information gathering from them. There are three different sets of DMs in the sample studies participants from industry, academia, and government. Participants varied from 120 through survey [64] to 2 [62,63] through group discussion and consultation. The median value of the total number of participants was 10. Only four studies [16,30,41,65] had taken participants from all three sectors: industry, academia, and government. While 56 studies had DMs from industry including others and two studies [51,72] had only academic DMs, 17 studies didn’t mention the number of DMs.
5.4. Decision Making and Data Collection Techniques
There are two approaches followed for decision making, namely, discourse and survey. For discourse many techniques have adopted such as idea engineering workshops [40,60], telephonic enquiries [43,44], group decision making [13,52], personal interview [70,78], brainstorming [16,33,34,66], laddering interview [39], direct meetings [44], semi-structured interview [21,58,93] and structured interview [69], Delphi technique [37,61], and focus group discussion [11,27]. Similarly, for surveys different techniques are as follows: individual and consensus questionnaire [43], Likert scale questionnaire [78,90], email questionnaire [44], library survey method [9], and self-administered questionnaire [46].
5.5. Assessment of Application of ISM Technique Using SmartISM
The SSIM matrices from all the 77 articles were entered into the developed SmartISM software and resulted in 77 excel files. Thereafter, for each article results were reproduced in the SmartISM software buy running the macros in 77 excel files. Variations between the reported results in the articles and corresponding SmartISM reproduced results were studied. Due to differences in transitivity incorporation FRM was checked for firstly non-incorporation of transitivity, followed by two-hop transitivity (second-order) and lastly generalized transitivity (all levels). In some cases, second order and generalized transitivity could be same. Furthermore, in case of inconsistency the digraph was manually built and transitivity was traced before reporting the results. Similarly, the complete process was analyzed to identify the reasons for the errors in any of the steps. As ISM technique is sequential, error in one step will cause subsequent steps to be erroneous specially if error exists in the steps of RM, FRM, and level partitioning.
The results of the assessments are summarized in Table 3 where ‘Y’ means the articles’ calculations match with that of SmartISM and ‘N’ means different results. For each article SSIM, RM, FRM, level partitioning, digraph, final model, edges in the final model, and MICMAC diagrams are verified. Three studies [64,92,94] didn’t report standard SSIM and two studies [15,66] had no SSIM, therefore results were not reproduced for them. Out of 72 remaining studies, 29 studies came out correct on all the parameters and their serial numbers (S. No.) are marked with stars ‘*’. Of these 29 studies, 25 had either second level (two-hop or second-order transitivity) or all levels (generalized transitivity), and four [70,71,88,97] had no transitivity calculations.
The remaining 43 studies with different results from the SmartISM outputs were further analyzed starting from first the step of SSIM and moving on until the variations were identified. One study [19] had one wrong self-relation in RM. Three studies [20,21,22] had incorrect RM and one article [93] did not provide RM and FRM. Two studies [59,89] didn’t provide RM, and their FRM didn’t match with the SmartISM output due to wrong transitivity calculations. Furthermore, eighteen studies [9,13,16,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] had incorrect transitivity calculations leading to variations in FRM. Five studies [38,39,40,41,42] had variations at the fourth step of level partitioning. One study [31] was checked for level partitioning without transitivity as it was not considered, and came out wrong in assigning levels to variables. Finally, 12 studies had accurate hierarchical structures of variables in the final ISM model but variations in the edges that distorted the reachability of variables. Of these 12 studies, eight studies [11,14,43,44,45,46,47,48] had some extra edges and four studies [49,50,51,52] had some missing edges in the final model.
In the documentation of application of ISM, only eight studies [12,20,27,35,65,68,69,70] reported digraph. MICMAC analysis has been used by all studies except five [19,39,47,71,72] to explain grouping of the variables. Five studies [27,29,59,65,93] have explicitly mentioned X and one study [52] has mentioned 1 in the SSIM for variables to represent mutual self-relation, although it is a basic assumption in ISM therefore, other studies have not mentioned it.
6. Discussion
The operationalization of the ISM is best to be conducted through software, as there are tedious calculations such as transitivity, level partitioning, and graphical displays of digraph, final ISM model, and MICMAC diagram. Moreover, these calculations and displays need to be iterated until the high confidence model is approved by the experts. Therefore, this study has explained the methodology to develop MS Excel and VBA based, end-to-end software, SmartISM for ISM and MICMAC with the help of pseudo codes. For incorporating transitivity in FRM, the Warshall algorithm has been used, and a new algorithm RCM has been introduced for removing edges from variables’ second lower level onwards without affecting reachability and digraph structure. Further, the demonstration video of SmartISM has been added as a Supplementary Material, and this tool has been extensively tested on the existing studies and applied successfully in some of the studies [98,99,100].
Furthermore, the scoping review shows that the ISM and MICMAC techniques are being applied in different domains of social sciences, management, engineering, and technology such as sustainability, SCM, operations, manufacturing, human resource, information technology, and many other innovative areas. This technique is also employed in different multi criteria decision making techniques such as AHP, ANP, TOPSIS, DEMATEL, etc. There are four important issues that need to be addressed such as variables and their context, decision makers’ experience and numbers, decision making and data collection techniques, and utilization of software tools. The nature of variables has been enablers or drivers, challenges or barriers, critical success factors, strategies, capabilities and drivers, and influencing or significant elements in the area of study. Their numbers have varied from 5 to 32 and they have been identified through domain specific literature review, experts’ opinions, and/or survey. Furthermore, techniques such as thematic analysis, upper echelon theory, contingency theory, content analysis, best worst method, SWOT analysis, idea engineering workshop, and Delphi technique are used for variables’ identification. Similarly, the variables have been explained well to establish the contextual meaning.
Another important aspect is the experts or decision makers, as the whole analysis is dependent upon their knowledge and experience. There should be representation from all stakeholders of the domain being studied. In the best-case, experts from academia, industry, government and regulatory bodies should be selected in the panel of DMs. There are very few studies such as four in the sample of articles that have had DMs from all the stakeholders. The number of DMs varied from 2 to 120, whereas in most of the studies they were 11. Two approaches have been utilized for extracting information from DMs namely discourse and surveys. The discourse techniques are idea engineering workshops, telephonic enquiries, group decision making, personal interview, brainstorming, laddering interview, direct meetings, semi-structured and structured interview, Delphi technique, and focus group discussion. Survey techniques have used individual and consensus questionnaires, Likert scale questionnaire, email questionnaire, library survey method, and self-administered questionnaire.
The SmartISM reproduced results, on the existing studies selected in scoping review, show that only 29 out of 77 studies had correct calculations with varied transitivity incorporation such as no transitivity, second order transitivity, or generalized transitivity. Wrong transitivity calculation has been the most frequent reason for incorrect ISM results followed by variations in drawing edges in the final model that affects the reachability of the variables.
Lastly, five studies didn’t report standard SSIM, which is essential to reproduce the calculations. Therefore, as a standard practice some minimum outputs must be reported namely SSIM, FRM, level partitioning (final after all iterations), and final ISM model. Similarly, MICMAC analysis is also an important and indispensable part of ISM, as all studies except five have used it for classifying variables into one of the four groups, namely, dependent, independent, linkage, and autonomous.
7. Conclusions
Human decisions play a very important role in any social or technical system development. Domain experts have intricate knowledge on the system and can predict the contextual interrelationships between the variables of interest in the particular domain. The interpretive structural modelling technique can assemble their tacit knowledge into a tangible hierarchical model leading to an enhanced understanding of the subject. This study has developed a software tool such as SmartISM to implement ISM in an error-free, user-friendly, and graphical style. In addition to automation of existing routines of ISM, the Warshall algorithm is used for transitivity calculations and a new algorithm, reduced conical matrix, has been introduced to convert the digraph into a final model with lesser edges while retaining the digraph structure and reachability of variables. Furthermore, the scoping review of this research will guide practitioners, policy makers, and academicians in applying this technique in different disciplines in an informed way. It will help in managing ISM configuration settings such as variables’ selection, composition of decision makers, decision making, and data collection techniques. The poor results of assessment of application of ISM technique in the previous studies necessitate the utilization of an end-to-end software, such as SmartISM, to produce a high confidence final model, explaining the interrelationships between important constructs in the applied domain. To limit the number of articles in the review process only the ScienceDirect database was used, and for the last four years articles were randomly selected; therefore, results should be interpreted accordingly. The future studies will focus on the development of software tools to apply ISM in conjunction with other MCDM techniques such as AHP, ANP, TOPSIS, and DEMATEL.
Conceptualization, N.A. and A.Q.; methodology, N.A.; software, N.A.; validation, N.A. and A.Q.; formal analysis, N.A.; investigation, A.Q.; resources, A.Q.; writing—original draft preparation, N.A.; writing—review and editing, N.A. and A.Q. All authors have read and agreed to the published version of the manuscript.
This research received no external funding.
Not applicable.
Not applicable.
The data presented in this study are available on request from the corresponding author.
Authors are highly thankful to the King Khalid University, Kingdom of Saudi Arabia for all the support provided for this research work.
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publication sources for two or more articles.
Publication Title | 2005 | 2007 | 2008 | 2009 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Journal of Cleaner Production | 2 | 2 | 5 | 3 | 1 | 3 | 1 | 1 | 18 | |||||||
Renewable & Sustainable Energy Reviews | 1 | 1 | 1 | 2 | 5 | |||||||||||
Resources, Conservation and Recycling | 1 | 1 | 1 | 1 | 1 | 5 | ||||||||||
Resources Policy | 3 | 1 | 4 | |||||||||||||
Procedia Social and Behavioral Sciences | 3 | 1 | 4 | |||||||||||||
Procedia Engineering | 1 | 1 | 2 | |||||||||||||
Journal of Environmental Management | 1 | 1 | 2 | |||||||||||||
Computers & Industrial Engineering | 1 | 1 | 2 | |||||||||||||
Telematics and Informatics | 1 | 1 | 2 | |||||||||||||
International Journal of Production Economics | 1 | 1 | 2 | |||||||||||||
Sustainable production and consumption | 1 | 1 | 2 | |||||||||||||
Technological Forecasting and Social Change | 1 | 1 | 2 | |||||||||||||
Miscellaneous Sources with 1 article | 1 | 2 | 1 | 1 | 3 | 5 | 1 | 3 | 1 | 2 | 3 | 4 | 27 | |||
Total | 1 | 1 | 2 | 1 | 2 | 1 | 5 | 9 | 11 | 10 | 14 | 5 | 5 | 5 | 5 | 77 |
Articles’ domain, variables, decision makers and techniques, and ISM and other MCDM approaches.
S. No. | Reference | Domain |
Variables Description | Method of Decision Making | Number of Decision Makers | Techniques |
---|---|---|---|---|---|---|
1 | [ |
Sustainability (Eco-Design) | 6 barriers | workshops, seminars, telephonic enquiries, and individual and consensus questionnaire | 4 excluding authors | ISM and MCDM |
2 | [ |
Sustainability (Manufacturing) | 10 barriers and 10 enablers | two-phase questionnaire survey and online survey | 10 (5 academic and 5 industry) | DEMATEL-MMDE-SEM-ISM |
3 | [ |
Sustainability (GSCM) | 11 drivers | decision team | Including experts from the industry | ISM |
4 | [ |
Sustainability (GSCM) | 26 CFS | personal interview, Likert scale questionnaire, decision team | 10 (9 industry and 1 government) | ISM |
5 | [ |
Sustainability (E-Waste recycling) | 10 barriers | brainstorming, and interviews | 10 (6 industry, 1 NGO, 2 government and 1 academic) | DEMATEL-ISM |
6 | [ |
Sustainability (Healthcare-Waste) | 8 factors | group decision making | industry, academic and government, 9 for AHP | ISM, fuzzy AHP and fuzzy TOPSIS. |
7 | [ |
Logistics (Reverse logistics Provider) | 7 factors | expert opinion | 5 for TOPSIS | ISM and fuzzy TOPSIS |
8 | [ |
Energy (Smart grid technologies) | 12 barriers | idea engineering workshop | Industry and academia | ISM and MICMAC |
9 | [ |
Sustainability (GSCM) | 18 factors | face to face interview using questionnaire | 15, (OEM 3, tier-1 5, tier-2 4, tier-3 3) | ÌPA, ISM, MICMAC |
10 | [ |
Sustainability (Landfill Community) | 12 barriers | expert opinions, interviews and group discussions | information not available | ISM MICMAC |
11 | [ |
Energy (Solar Power) | 13 barriers | workshop | 6 (4 industry and 2 academic) | ISM MICMAC |
12 | [ |
SCM (Food-Waste) | 9 challenges | consultation | 5 (industry and 2 academic) | Exploratory Factor Analysis, ISM MICMAC |
13 | [ |
SCM (Humanitarian SC) | 12 CSF | consultation | 7 (3 industry and 4 academic) | ISM MICMAC |
14 | [ |
Sustainability (SSCM) | 13 enablers | one day workshop | 15 or 25 industry | ISM MICMAC |
15 | [ |
Business (Offshoring) | 9 elements | consultation and approval of interviewed experts | 30 (6 each for 5 cases’ development) | ISM MICMAC |
16 | [ |
Logistics (Reverse logistics) | 11 barriers | consultation | 2 (1 industry and 1 academic) | ISM MICMAC |
17 | [ |
Energy | 13 barriers | questionnaire and communication | 4 for questionnaire and 3 for agreement through communication (mix) | ISM MICMAC |
18 | [ |
HR (OSH) | 8 factors | discussion for 72 h | 5 industry | ranking order clustering ROC, ISM |
19 | [ |
Sustainability (GSCM) | 26 barriers identification by more than 5 experts | questionnaire and discussion | 2 (1 industry and 1 academic) | ISM MICMAC |
20 | [ |
Sustainability (GSCM) | 20 barriers | brainstorming | 5 (3 industry and 2 academic) | ISM MICMAC |
21 | [ |
Logistics (3rd party Reverse logistics provider) | 7 attributes | consultation | information not available | ISM MICMAC |
22 | [ |
Tourism (Tour Value) | 12 enablers | brainstorming | 7 (4 industry and 3 academic) | ISM MICMAC |
23 | [ |
Marketing (Motivation) | 17 motivations | laddering interview | 52 respondents through content analysis of interviews | Content analysis ISM |
24 | [ |
Supplier Selection (Corporate social responsibility) | 9 CSR issues | direct meetings, telephonic inquiries, and email, and questionnaire | 150 firework industrial managers from SMEs and relevant field experts for variable identification | ISM MICMAC |
25 | [ |
Sustainability (SSCM) | 25 SSCM practices | questionnaire and judgement group | 45 or more survey response, consolidation judgement group of 15 | ISM MICMAC |
26 | [ |
Sustainability (Production) | 20 barriers | workshop | 23 experts | ISM ANP |
27 | [ |
Sustainability (Green Business Model in Construction) | 5 barriers | thematic analysis, semi-structured interviews | 19 | ISM MICMAC |
28 | [ |
Marketing (Retail Brand) | 10 factors | brainstorming sessions | 9 (4 industry and 5 academic) | ISM MICMAC |
29 | [ |
Sustainability (Neighborhoods) | 19 barriers | interview | 15 (10 industry and 5 academic) Divided into 2 nominal groups for validation | ISM MICMAC |
30 | [ |
Sustainability (Construction) | 8 CSFs for roads and bridges, and 10 CSFs for embarkment | idea engineering workshop | 3 (2 industry, 1 academia) | ISM MICMAC |
31 | [ |
IT (E-Commerce Security) | 10 factors | 13 semi structured interview | 13 industry | Content analysis, ISM |
32 | [ |
Operations (Maintenance) | 8 Maintenance tools and techniques | consultation | 5 | ÍSM MICMAC |
33 | [ |
Operations (Maintenance) | 24 factors | discussion | information not available | ISM MICMAC |
34 | [ |
IT (ERP) | 16 CSFs | face to face communication, questionnaire surveys since difficult to gather them | 14 industry | ISM MICMA Fuzzy cognitive maps |
35 | [ |
Innovation (Manufacturing) | 11 innovation enablers (competitiveness) | Delphi technique | industry and academia | ISM Fuzzy MICMAC |
36 | [ |
IT (Cloud) | 16 CSFs | Delphi technique from 20 to 16 | 14 (11 industry and 3 academic) | ISM MICMAC |
37 | [ |
Sustainability (SSCM) | 10 enablers | 27 survey response followed by the telephonic interviews | 27 industry survey based on Fawcett et al. (2014) | TISM MICMAC |
38 | [ |
HR (Team) | 11 factors | expert opinions | 14 (10 industry and 4 academic) | ISM |
39 | [ |
HR (OHSAS) | 9 factors influencing safety | expert opinions | 25 to 16 industry responded | ISM MICMAC |
40 | [ |
Sustainability (SSCM) | 10 hurdles | decision team rated on 5-point Likert scale and brainstorming for SSIM | 7 (4 industry, 3 academic) | ISM MICMAC |
41 | [ |
Energy (Solar) | 16 barriers | LR and expert opinion | None | ISM Fuzzy MICMAC |
42 | [ |
National (National Infrastructure) | 13 Indian Critical infrastructure sectors | LR, brainstorming, face to face interview | 30 experts (7 academic, 13 industry, 10 gov.) | ISM MICMAC |
43 | [ |
Energy (Biodiesel) | 5 risk factors for ISM | expert opinions through group discussions | research group of senior university professors | ISM Bayesian network |
44 | [ |
Sustainability (Emission trading system) | 15 factors | semi structured interviews, factors selected on 4 to 3 votes, same rule of majority gives way to minority for relationship | 58 to 10 to 7 experts | ISM MICMAC |
45 | [ |
Sustainability (Remanufacturing) | 14 obstacles | consultation | industry and academia | ISM |
46 | [ |
SCM (SCM) | 15 factors | 2 brainstorming sessions and verification by recirculation of model, 179 survey response to develop correlation matrix | 5 industry | ISM MICMAC |
47 | [ |
Manufacturing | 15 factors | 340 to 480 self-administered questionnaires | experts from industry and academic | questionnaire-based survey; ISM MICMAC approach; EFA; CFA and GTMA |
48 | [ |
SCM (Food SCM) | 14 Critical causal factors | Input from experts | 13 Indian academics in phase 1, 12 industry | ISM MICMAC |
49 | [ |
Sustainability (Production) | 21 criteria | linguistic preferences and that concurrently applies perception judgment-pretesting of survey-purposive sampling method-120 replies | 10 researchers then 5 researchers for pre-testing, For ISM 120 responses | fuzzy set theory and ISM |
50 | [ |
SCM (Food SCM) | 16 causes of food wastages | Semi structured interview Brainstorming | 6 (4 industry 2 academic) | TISM fuzzy MICMAC |
51 | [ |
Sustainability (Green IT/IS) | 13 psychological drivers of motivation | Upper Echelon Theory (UET) Focus group discussions Survey for ANP | 10 (2 industry 8 academic) | Hybrid ISM -ANP |
52 | [ |
IT (Building Information Modelling) | 15 capability factors for BIM adoption | the semi-structured interviews and focus groups were conducted and LR | 7 industry | ISM MICMAC |
53 | [ |
Sustainability (Reverse logistics) | 7 grouped barriers | Phone consultation and face to face structured interview | 4 (2 industry 2 academic) | ISM MICMAC |
54 | [ |
Sustainability (GSCM) | 12 behavioral factors | Opinion of experts | 15 (10 industry, 3 academic, 2 government) | ISM MICMAC |
55 | [ |
Sustainability (GHRM) | 7 factors | Ability Motivation Opportunity theoretical lens Questionnaire and personal interview Pilot study from 97 respondents to 7 factors ISM on 7 factors SEM to validate model | 11 experts listed 42 variables EFA 42 to 32 variables to 7 factors CFA 32 to 24 variables Same 11 experts for ISM | LR, expert opinion to EFA to CFA to ISM MICMAC to ISEM |
56 | [ |
Operations (Lean Manufacturing) | 9 antecedents and critical success factors | Group discussion for ANP and pairwise comparisons, Also, for identifying 9 factors and ISM | 7 industry | ANP -horizontal integration of human ISM- vertical integration of human |
57 | [ |
IT (SCM) | 11 technological capabilities | Brainstorming | 3 industry | TISM |
58 | [ |
Supplier relationship management (SRM) | 10 factors | library survey method-questionnaire-research method in this survey is descriptive and analytical | managers and the production heads | leveling the factors using ISM model MICMAC, fuzzy TOPSIS-AHP- ranking suppliers |
59 | [ |
SCM (E-Procurement) | 14 barriers and 15 benefits | Five-point scale survey followed by brainstorming session | 8 industry for variable reduction + 4 academic for ISM | ISM SEM |
60 | [ |
Sustainability (SSCM) | 32 CSFs of motivation and encouragement | 32 CSFs were identified from LR and opinions of academicians and industry practitioners | consultation with industry experts and academic | ISM MICMAC |
61 | [ |
IT (Social networking sites (SNS)) | 12 Factors of abandoning usage of SNS | survey on 60 PG students who have abandoned the SNS at least once and validation by LR | 60 students as experts | ISM MICMAC |
62 | [ |
Sustainability (GSCM) | 19 influential factors on the implementation | LR, and invoking the contingency theory perspective to get 19 factors group discussion for ISM (4 sessions) | 13 Industry | ISM MICMAC |
63 | [ |
Sustainability (recycling 3D printing waste) | 22 barriers | Interview for identification of barriers and 3 experts consulted for relationships between barriers | 13 (12 industry and 1 academic) | ISM |
64 | [ |
Sustainability (Green Lean Six Sigma) | 12 enablers | LR, survey and expert opinion for identification of enablers | Not mentioned | ISM MICMAC |
65 | [ |
IT (Building Information Modelling) | 12 barriers | LR and survey for identification of enablers and semi-structured interview for relationships between barriers | 5 industry | ISM MICMAC |
66 | [ |
Sustainability (Oil and gas SSCM) | 7 determinants | LR and expert opinion for identification of determinants, individual expert opinion for relationships among determinants | 18 (13 industry 5 academic) | ISM MICMAC and SEM |
67 | [ |
IT (m-commerce) | 10 barriers | LR and survey for identification of determinants, survey for relationships among determinants | Number of participants not mentioned | ISM MICMAC |
68 | [ |
Building energy performance | 16 factors | LR and interview for identification of factors, and interview for relationships | 12 industry | ISM MICMAC |
69 | [ |
Quality of Passenger interaction process | 15 enablers | Report, passengers’ opinion including authors and observations for identification of enablers, and also for relationships | Authors opinions | ISM MICMAC |
70 | [ |
IT (Cloud computing) | 7 determinants | Content analysis on interview transcripts of 58 industry people for identification of determinants, Group discussion for relations | Not mentioned | ISM MICMAC, AHP and TOPSIS |
71 | [ |
SC (Lean Sis Sigma) | 10 barriers | LR and 10 consultation sessions with 35 experts using brainstorming and focused group method to identify barriers and relationships | 35 (industry and academic) | ISM MICMAC |
72 | [ |
Sustainability (CSR) | 12 enablers | LR, survey and interviews for identification of enablers and experts’ opinions for relationships | 20 (industry and academic) | ISM MICMAC |
73 | [ |
Automobile (Electric Vehicle) | 12 barriers | LR, expert opinion and best worst method to select barriers | 10 (7 industry and 3 academic) | ISM MICMAC and Best worst method |
74 | [ |
Marketing (app-based retailing) | 20 factors | LR and survey from expert for factors identification and relationships | 33 (30 industry and 3 academic) | ISM MICMAC |
75 | [ |
SC (Food loss and waste) | 8 factors | LR and consultation with experts for factors selection and relationships | 11 (5 industry and 6 academic) | ISM MICMAC |
76 | [ |
New product development (time to market) | 19 capabilities and 5 drivers | LR and expert interview for identification of capabilities and drivers and relationships | 14 (8 industry and 6 academic) | ISM fuzzy MICMAC |
77 | [ |
Sustainability (Renewable energy) | 13 strategies | LR and SWOT analysis for strategies identification and experts’ opinion for relationships | 5 (2 industry, 2 academic and 1 government) | SWOT ISM MICMAC |
SC: Supply chain, SCM: SC management, SSCM: Sustainable SCM, GSCM: Green SCM, SRM: Supplier relationship management, OSH: Occupational safety and health, IT: Information technology, IS: Information Systems, ERP: Enterprise resource planning, HR: Human resources, GHRM: Green HR Management, OHSAS: Occupational health and safety assessment series, NGO: Non-governmental organization, SME: Small and medium scale enterprises, ISM: Interpretive structural modelling, SSIM: Structural self-interaction matrix, AHP: Analytical hierarchy process, ANP: Analytic network process, TOPSIS: Technique for order of preference by similarity to ideal solution, LR: Literature review, CSF: Critical success factors, SEM: Structural equation modeling, EFA: Exploratory factor analysis, CFA: Confirmatory factor analysis; CSR: Corporate social responsibility; SWOT: Strengths, weaknesses, opportunities, and threats.
Assessment of application of ISM using Smart ISM.
S. No. | References | SSIM | RM | FRM | Partitioning | Transitivity | Digraph | Model | Edges | MICMAC | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Varied | Y | Added extra edge from variable 4 to variable 5 |
2 | [ |
N | N | N | N | N | N | N | N | N | No SSIM |
3 | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Varied | Y | Some edges are missed such as between variable 9 and variable 1 |
4 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | |
5 | [ |
Y | Y | N | N | N | N | N | N | Y | Wrong calculation for transitivity |
6 | [ |
Y | Y | N | N | No Level | N | N | N | Y | Transitivity not incorporated though mentioned in the methodology |
7 | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Varied | Y | Added extra edge from R to I |
8 * | [ |
Y | Y | Y | Y | All Levels | N | Y | Y | Y | |
9 | [ |
Y | Y | Y | N | 2nd Level | N | N | Y | Y | At 8th level one variable is wrong in model |
10 | [ |
Y | Y | N | N | No Level | N | N | N | N | Didn’t incorporate transitivity though the concept is mentioned |
11 * | [ |
Y | Y | Y | Y | All Levels | N | Y | Y | Y | |
12 | [ |
Y | Y | N | N | All Levels | N | N | N | N | Wrong calculation for transitivity, only two transitive links but shown more |
13 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | No transitive links |
14 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | |
15 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | Retained some transitive links in the model |
16 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | |
17 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | |
18 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | Model upside down |
19 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | |
20 | [ |
Y | Y | N | N | N | N | N | N | Y | Wrong calculation for transitivity and for generalized transitivity; all will be having same dependence and driving powers with max value |
21 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | MICMAC axis interchanged and for generalized transitivity all will be having same dependence and driving powers with max value |
22 | [ |
N | N | N | N | N | N | N | N | N | No SSIM and directly starts with RM |
23 | [ |
Y | Y | Y | N | All Levels | N | N | N | N | No MICMAC |
24 | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Varied | Y | Added extra edge from variable 6 to variable 9 |
25 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | |
26 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | N | B2 element wrong on MICMAC |
27 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | |
28 | [ |
Y | Y | N | N | N | N | N | N | N | RM and FRM together, one transitive link skipped between elements EM and BN |
29 * | [ |
Y | Y | Y | Y | All Levels | N | Y | Y | Y | |
30 | [ |
Y | Y | Y | N | 2nd Level | N | N | N | N | Wrong leveling, one element missing on MICMAC |
31 | [ |
Y | N | N | N | 2nd Level | N | N | N | N | No MICMAC, one extra wrong self-relation |
32 | [ |
Y | Y | N | N | No Level | Y | N | N | N | Transitivity not incorporated though mentioned in the methodology, non-standard relation symbols in SSIM such as F, R, FR, and X |
33 | [ |
Y | Y | N | N | 2nd Level | N | N | N | N | Wrong transitivity calculation |
34 | [ |
Y | Y | Y | Y | All Levels | N | Y | Varied | Y | Added wrong edges for F12 and F15 |
35 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Y | Y | No transitivity relations found |
36 | [ |
Y | Y | N | N | 2nd Level | Y | N | N | N | Wrong transitivity calculation |
37 * | [ |
Y | Y | N | Y | 2nd Level | N | Y | Y | N | Skipped one transitive relation between 8 and 9, same results for second-order and generalized transitivity |
38 * | [ |
Y | Y | N | Y | No Level | N | Y | Y | Y | Transitivity mentioned but not included; rest of all the things correct |
39 | [ |
Y | N | N | N | 2nd Level | N | N | N | N | Wrong transitivity calculation |
40 * | [ |
Y | Y | Y | Y | All Levels | N | Y | Y | Y | Same results for second-order and generalized transitivity |
41 * | [ |
Y | Y | Y | Y | All Levels | N | Y | Y | Y | |
42 | [ |
Y | Y | Y | N | 2nd Level | N | N | N | Y | No transitive links |
43 * | [ |
Y | Y | N | Y | 2nd Level | Y | Y | Y | N | |
44 | [ |
N | N | N | N | N | N | N | N | N | Non-standard SSIM |
45 * | [ |
Y | Y | N | Y | No Level | N | Y | Y | N | Transitivity not calculated and no MICMAC |
46 | [ |
Y | Y | N | N | 2nd Level | N | N | N | N | |
47 | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Varied | Y | Extra edges added |
48 | [ |
Y | Y | N | N | 2nd Level | N | N | N | N | |
49 | [ |
N | N | N | N | N | N | N | N | N | Non-standard SSIM, fuzzy ISM |
50 | [ |
Y | Y | N | N | 2nd Level | N | N | N | N | TISM |
51 | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Varied | N | One extra edge, MICMAC calculation is correct but drawn wrong |
52 | [ |
Y | N | N | N | 2nd Level | N | N | N | N | For self-relation X shown in SSIM whereas RM and FRM not given |
53 * | [ |
Y | Y | Y | Y | 2nd Level | Y | Y | Y | Y | |
54 * | [ |
Y | Y | Y | Y | 2nd Level | Y | Y | Y | Y | For self-relation X shown in SSIM |
55 * | [ |
Y | Y | Y | Y | No Level | Y | Y | Y | Y | Transitivity not included |
56 * | [ |
Y | Y | Y | Y | 2nd Level | Y | Y | Y | Y | |
57 | [ |
N | N | N | N | N | N | N | N | N | Non-standard SSIM |
58 | [ |
Y | Y | N | N | 2nd Level | N | N | N | N | Many mistakes in transitivity calculation |
59 | [ |
Y | Y | Y | Y | 2nd Level | N | N | N | N | No MICMAC, extra edges |
60 | [ |
Y | N | N | N | 2nd Level | N | N | N | N | RM onwards wrong calculations |
61 * | [ |
Y | Y | Y | Y | All Levels | N | Y | Y | N | MICMAC explained in detail |
62 | [ |
Y | N | N | N | 2nd Level | N | N | N | N | Partitioning in simulation didn’t give levels, for self-relation X shown in SSIM |
63 | [ |
Y | Y | Y | Y | 2nd Level | N | Y | Varied | N | Some extra edges drawn in final model, no MICMAC |
64 | [ |
Y | Y | N | N | N | N | N | N | N | Wrong transitivity calculations |
65 | [ |
Y | N | N | N | All Levels | N | N | N | N | Non-standard SSIM, wrong conversion for relationship between elements B10 and B08 in RM |
66 | [ |
Y | N | N | Y | All Levels | N | Y | Y | N | in SSIM for CGLC, self-influence is considered wrong and assigned 0 |
67 * | [ |
Y | Y | Y | Y | 2nd Level | N | Y | N | Y | Digraph is not mentioned |
68 | [ |
N | N | Y | Y | All levels | N | Y | Varied | Y | Adjacency matrix to represent RM, one edge F6 to F1 from adjacency matrix is not drawn |
69 | [ |
Y | Y | Y | Y | All Levels | N | Y | Varied | Y | Some edges are missed such as between NWFOB and AEPE |
70 | [ |
Y | Y | N | Y | No Level | N | Y | Varied | Y | 1 in SSIM for self-relation, transitivity not included although concept is discussed; some reachability edges missed such as C6 to C1 |
71 | [ |
Y | Y | N | Y | 2nd Level | Y | Y | Y | N | 5 transitive links missing in 2nd level transitivity and 6 missing from all levels |
72 | [ |
Y | Y | Y | N | 2nd Level | N | N | N | Y | First partitioning iteration is wrong and incorrectly assigns level 1 to E4 |
73 | [ |
Y | Y | N | Y | All levels | N | Y | N | N | One transitive link between B1 and B12 is missed out; B1 is wrongly placed in MICMAC diagram |
74 * | [ |
Y | Y | N | Y | No Level | N | Y | Y | N | All 3 transitive links missing, although the concept is mentioned; Wrong MICMAC |
75 | [ |
Y | Y | Y | Y | All levels | N | Y | Varied | Y | One extra edge between F1 and F4 that changes the reachability |
76 | [ |
Y | Y | N | N | 2nd Level | N | N | N | N | X for self-relation in SSIM, missing transitive link between T14 and T19, self-interaction between for T17 missing, Wrong transitive link given between T19 and T6 |
77 | [ |
Y | Y | N | N | All Levels | N | N | N | N | Many mistakes in transitivity calculations such as between S5 and S13 |
* All SmartISM reproduced results similar to articles’ ISM process results with varied transitivity considerations. Y: SmartISM reproduced results similar to articles’ ISM process results, N: SmartISM reproduced results not similar to articles’ ISM process results, Varied: edges in the final model varied, although the hierarchical structure of variables may or may not be correct. ISM: Interpretive structural modelling, TISM: Total ISM, SSIM: Structural self-interaction matrix, RM: Reachability Matrix, FRM: Final RM, MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to classification)). Some variables code such as B2, EM, and BN have been given in the table for their description, refer to the articles. Symbol X in SSIM means both variables mutually influence each other.
Supplementary Materials
The following is available online at
References
1. Warfield, J.N. An Assault on Complexity; Office of Corporate Communications: Battelle, FI, USA, 1973.
2. Warfield, J.N. Developing subsystem matrices in structural modeling. IEEE Trans. Syst. Man Cybern.; 1974; 4, pp. 74-80. [DOI: https://dx.doi.org/10.1109/TSMC.1974.5408523]
3. Warfield, J.N. Developing interconnection matrices in structural modeling. IEEE Trans. Syst. Man Cybern.; 1974; 4, pp. 81-87. [DOI: https://dx.doi.org/10.1109/TSMC.1974.5408524]
4. Warfield, J.N. Societal Systems: Planning, Policy and Complexity; John Wiley & Sons: New York, NY, USA, 1976.
5. Elkington, J. 25 Years Ago I Coined the Phrase “Triple Bottom Line.” Here’s Why it’s Time to Rethink it. Harvard Business Review; 25 June 2018; Available online: https://hbr.org/2018/06/25-years-ago-i-coined-the-phrase-triple-bottom-line-heres-why-im-giving-up-on-it (accessed on 7 April 2021).
6. Farris, D.R.; Sage, A.P. On the use of interpretive structural modeling for worth assessment. Comput. Electr. Eng.; 1975; 2, pp. 149-174. [DOI: https://dx.doi.org/10.1016/0045-7906(75)90004-X]
7. Warfield, J.N. Structuring Complex Systems, (A Battelle Monograph No. 4); Battelle Meml. Inst: Columbus, OH, USA, 1974.
8. Godet, M. Introduction to la prospective: Seven key ideas and one scenario method. Futures; 1986; 18, pp. 134-157. [DOI: https://dx.doi.org/10.1016/0016-3287(86)90094-7]
9. Beikkhakhian, Y.; Javanmardi, M.; Karbasian, M.; Khayambashi, B. The application of ISM model in evaluating agile suppliers selection criteria and ranking suppliers using fuzzy TOPSIS-AHP methods. Expert Syst. Appl.; 2015; 42, pp. 6224-6236. [DOI: https://dx.doi.org/10.1016/j.eswa.2015.02.035]
10. Govindan, K.; Madan Shankar, K.; Kannan, D. Application of fuzzy analytic network process for barrier evaluation in automotive parts remanufacturing towards cleaner production—A study in an Indian scenario. J. Clean. Prod.; 2016; 114, pp. 199-213. [DOI: https://dx.doi.org/10.1016/j.jclepro.2015.06.092]
11. Dalvi-Esfahani, M.; Ramayah, T.; Nilashi, M. Modelling upper echelons’ behavioural drivers of Green IT/IS adoption using an integrated Interpretive Structural Modelling—Analytic Network Process approach. Telemat. Inform.; 2017; 34, pp. 583-603. [DOI: https://dx.doi.org/10.1016/j.tele.2016.10.002]
12. Wong, W.P.; Wong, K.Y. Synergizing an ecosphere of lean for sustainable operations. J. Clean. Prod.; 2014; 85, pp. 51-66. [DOI: https://dx.doi.org/10.1016/j.jclepro.2014.05.093]
13. Chauhan, A.; Singh, A. A hybrid multi-criteria decision making method approach for selecting a sustainable location of healthcare waste disposal facility. J. Clean. Prod.; 2016; 139, pp. 1001-1010. [DOI: https://dx.doi.org/10.1016/j.jclepro.2016.08.098]
14. Kannan, G.; Pokharel, S.; Kumar, P.S. A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resour. Conserv. Recycl.; 2009; 54, pp. 28-36. [DOI: https://dx.doi.org/10.1016/j.resconrec.2009.06.004]
15. Bhanot, N.; Rao, P.V.; Deshmukh, S.G. An integrated approach for analysing the enablers and barriers of sustainable manufacturing. J. Clean. Prod.; 2017; 142, pp. 4412-4439. [DOI: https://dx.doi.org/10.1016/j.jclepro.2016.11.123]
16. Kumar, A.; Dixit, G. An analysis of barriers affecting the implementation of e-waste management practices in India: A novel ISM-DEMATEL approach. Sustain. Prod. Consum.; 2018; 14, pp. 36-52. [DOI: https://dx.doi.org/10.1016/j.spc.2018.01.002]
17. Ahmad, N.; Quadri, N.; Qureshi, M.; Alam, M. Relationship Modeling of Critical Success Factors for Enhancing Sustainability and Performance in E-Learning. Sustainability; 2018; 10, 4776. [DOI: https://dx.doi.org/10.3390/su10124776]
18. Naveed, Q.N.; Qureshi, M.R.N.; Alsayed, A.O.; Ahmad, N.; Sanober, S.; Shah, A. Assimilating E-Learning barriers using an interpretive structural modeling (ISM). Proceedings of the 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS); Salmabad, Bahrain, 29 November–1 December 2017; pp. 1-7.
19. Tan, F.T.C.; Guo, Z.; Cahalane, M.; Cheng, D. Developing business analytic capabilities for combating e-commerce identity fraud: A study of Trustev’s digital verification solution. Inf. Manag.; 2016; 53, pp. 878-891. [DOI: https://dx.doi.org/10.1016/j.im.2016.07.002]
20. Raut, R.D.; Narkhede, B.; Gardas, B.B. To identify the critical success factors of sustainable supply chain management practices in the context of oil and gas industries: ISM approach. Renew. Sustain. Energy Rev.; 2017; 68, pp. 33-47. [DOI: https://dx.doi.org/10.1016/j.rser.2016.09.067]
21. Tan, T.; Chen, K.; Xue, F.; Lu, W. Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach. J. Clean. Prod.; 2019; 219, pp. 949-959. [DOI: https://dx.doi.org/10.1016/j.jclepro.2019.02.141]
22. Gardas, B.B.; Raut, R.D.; Narkhede, B. Determinants of sustainable supply chain management: A case study from the oil and gas supply chain. Sustain. Prod. Consum.; 2019; 17, pp. 241-253. [DOI: https://dx.doi.org/10.1016/j.spc.2018.11.005]
23. Chandramowli, S.; Transue, M.; Felder, F.A. Analysis of barriers to development in landfill communities using interpretive structural modeling. Habitat Int.; 2011; 35, pp. 246-253. [DOI: https://dx.doi.org/10.1016/j.habitatint.2010.09.005]
24. Gokarn, S.; Kuthambalayan, T.S. Analysis of challenges inhibiting the reduction of waste in food supply chain. J. Clean. Prod.; 2017; 168, pp. 595-604. [DOI: https://dx.doi.org/10.1016/j.jclepro.2017.09.028]
25. Jayant, A.; Azhar, M. Analysis of the Barriers for Implementing Green Supply Chain Management (GSCM) Practices: An Interpretive Structural Modeling (ISM) Approach. Procedia Eng.; 2014; 97, pp. 2157-2166. [DOI: https://dx.doi.org/10.1016/j.proeng.2014.12.459]
26. Khan, I.; Rahman, Z. Brand experience anatomy in retailing: An interpretive structural modeling approach. J. Retail. Consum. Serv.; 2015; 24, pp. 60-69. [DOI: https://dx.doi.org/10.1016/j.jretconser.2015.02.003]
27. Patidar, L.; Soni, V.K.; Kumar Soni, P. Development of a Framework for Implementation of Maintenance Tools and Techniques Using Interpretive Structural Modeling. Mater. Today Proc.; 2017; 4, pp. 8158-8166. [DOI: https://dx.doi.org/10.1016/j.matpr.2017.07.157]
28. Mishra, R.P.; Kodali, R.B.; Gupta, G.; Mundra, N. Development of a Framework for Implementation of World-class Maintenance Systems Using Interpretive Structural Modeling Approach. Procedia CIRP; 2015; 26, pp. 424-429. [DOI: https://dx.doi.org/10.1016/j.procir.2014.07.174]
29. Raut, R.D.; Gardas, B.B.; Jha, M.K.; Priyadarshinee, P. Examining the critical success factors of cloud computing adoption in the MSMEs by using ISM model. J. High Technol. Manag. Res.; 2017; 28, pp. 125-141. [DOI: https://dx.doi.org/10.1016/j.hitech.2017.10.004]
30. Agarwal, A.; Shankar, R.; Tiwari, M.K. Modeling agility of supply chain. Ind. Mark. Manag.; 2007; 36, pp. 443-457. [DOI: https://dx.doi.org/10.1016/j.indmarman.2005.12.004]
31. Gardas, B.B.; Raut, R.D.; Narkhede, B. Modeling causal factors of post-harvesting losses in vegetable and fruit supply chain: An Indian perspective. Renew. Sustain. Energy Rev.; 2017; 80, pp. 1355-1371. [DOI: https://dx.doi.org/10.1016/j.rser.2017.05.259]
32. Balaji, M.; Arshinder, K. Modeling the causes of food wastage in Indian perishable food supply chain. Resour. Conserv. Recycl.; 2016; 114, pp. 153-167. [DOI: https://dx.doi.org/10.1016/j.resconrec.2016.07.016]
33. Kaswan, M.S.; Rathi, R. Analysis and modeling the enablers of Green Lean Six Sigma implementation using Interpretive Structural Modeling. J. Clean. Prod.; 2019; 231, pp. 1182-1191. [DOI: https://dx.doi.org/10.1016/j.jclepro.2019.05.253]
34. Ali, S.M.; Hossen, M.A.; Mahtab, Z.; Kabir, G.; Paul, S.K.; ul Haq Adnan, Z. Barriers to lean six sigma implementation in the supply chain: An ISM model. Comput. Ind. Eng.; 2020; 149, 106843. [DOI: https://dx.doi.org/10.1016/j.cie.2020.106843]
35. Tarei, P.K.; Chand, P.; Gupta, H. Barriers to the adoption of electric vehicles: Evidence from India. J. Clean. Prod.; 2021; 291, 125847. [DOI: https://dx.doi.org/10.1016/j.jclepro.2021.125847]
36. de Oliveira Mota, R.; Godinho Filho, M.; Osiro, L.; Ganga, G.M.D.; de Sousa Mendes, G.H. Unveiling the relationship between drivers and capabilities for reduced time-to-market in start-ups: A multi-method approach. Int. J. Prod. Econ.; 2021; 233, 108018. [DOI: https://dx.doi.org/10.1016/j.ijpe.2020.108018]
37. Mukeshimana, M.C.; Zhao, Z.-Y.; Nshimiyimana, J.P. Evaluating strategies for renewable energy development in Rwanda: An integrated SWOT—ISM analysis. Renew. Energy; 2021; 176, pp. 402-414. [DOI: https://dx.doi.org/10.1016/j.renene.2021.05.104]
38. Ruiz-Benitez, R.; López, C.; Real, J.C. Environmental benefits of lean, green and resilient supply chain management: The case of the aerospace sector. J. Clean. Prod.; 2018; 167, pp. 850-862. [DOI: https://dx.doi.org/10.1016/j.jclepro.2017.07.201]
39. Xiao, L. Analyzing consumer online group buying motivations: An interpretive structural modeling approach. Telemat. Inform.; 2018; 35, pp. 629-642. [DOI: https://dx.doi.org/10.1016/j.tele.2018.01.010]
40. Haleem, A.; Luthra, S.; Mannan, B.; Khurana, S.; Kumar, S.; Ahmad, S. Critical factors for the successful usage of fly ash in roads & bridges and embankments: Analyzing indian perspective. Resour. Policy; 2016; 49, pp. 334-348. [DOI: https://dx.doi.org/10.1016/j.resourpol.2016.07.002]
41. Singh, A.N.; Gupta, M.P.; Ojha, A. Identifying critical infrastructure sectors and their dependencies: An Indian scenario. Int. J. Crit. Infrastruct. Prot.; 2014; 7, pp. 71-85. [DOI: https://dx.doi.org/10.1016/j.ijcip.2014.04.003]
42. Kanji, R.; Agrawal, R. Exploring the use of corporate social responsibility in building disaster resilience through sustainable development in India: An interpretive structural modelling approach. Prog. Disaster Sci.; 2020; 6, 100089. [DOI: https://dx.doi.org/10.1016/j.pdisas.2020.100089]
43. Jabbour, C.J.C.; Jugend, D.; de Sousa Jabbour, A.B.L.; Govindan, K.; Kannan, D.; Leal Filho, W. “There is no carnival without samba”: Revealing barriers hampering biodiversity-based R&D and eco-design in Brazil. J. Environ. Manag.; 2018; 206, pp. 236-245. [DOI: https://dx.doi.org/10.1016/j.jenvman.2017.10.019]
44. Kumar, D.T.; Palaniappan, M.; Kannan, D.; Shankar, K.M.; Thresh Kumar, D.; Palaniappan, M.; Kannan, D.; Shankar, K.M. Analyzing the CSR issues behind the supplier selection process using ISM approach. Resour. Conserv. Recycl.; 2014; 92, pp. 268-278. [DOI: https://dx.doi.org/10.1016/j.resconrec.2014.02.005]
45. Baykasoğlu, A.; Gölcük, İ. Development of a two-phase structural model for evaluating ERP critical success factors along with a case study. Comput. Ind. Eng.; 2017; 106, pp. 256-274. [DOI: https://dx.doi.org/10.1016/j.cie.2017.02.015]
46. Jain, V.; Raj, T. Modelling and analysis of FMS productivity variables by ISM, SEM and GTMA approach. Front. Mech. Eng.; 2014; 9, pp. 218-232. [DOI: https://dx.doi.org/10.1007/s11465-014-0309-7]
47. Peeters, B.; Kiratli, N.; Semeijn, J. A barrier analysis for distributed recycling of 3D printing waste: Taking the maker movement perspective. J. Clean. Prod.; 2019; 241, 118313. [DOI: https://dx.doi.org/10.1016/j.jclepro.2019.118313]
48. Gokarn, S.; Choudhary, A. Modeling the key factors influencing the reduction of food loss and waste in fresh produce supply chains. J. Environ. Manag.; 2021; 294, 113063. [DOI: https://dx.doi.org/10.1016/j.jenvman.2021.113063] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34139647]
49. Diabat, A.; Govindan, K. An analysis of the drivers affecting the implementation of green supply chain management. Resour. Conserv. Recycl.; 2011; 55, pp. 659-667. [DOI: https://dx.doi.org/10.1016/j.resconrec.2010.12.002]
50. Xu, X.; Zou, P.X.W. Analysis of factors and their hierarchical relationships influencing building energy performance using interpretive structural modelling (ISM) approach. J. Clean. Prod.; 2020; 272, 122650. [DOI: https://dx.doi.org/10.1016/j.jclepro.2020.122650]
51. Kadam, S.; Bandyopadhyay, P.K. Modelling passenger interaction process (PIP) framework using ISM and MICMAC approach. J. Rail Transp. Plan. Manag.; 2020; 14, 100171. [DOI: https://dx.doi.org/10.1016/j.jrtpm.2019.100171]
52. Sharma, M.; Sehrawat, R. A hybrid multi-criteria decision-making method for cloud adoption: Evidence from the healthcare sector. Technol. Soc.; 2020; 61, 101258. [DOI: https://dx.doi.org/10.1016/j.techsoc.2020.101258]
53. Attri, R.; Dev, N.; Sharma, V. Interpretive structural modelling (ISM) approach: An overview. Res. J. Manag. Sci.; 2013; 2319, 1171.
54. Attri, R. Interpretive structural modelling: A comprehensive literature review on applications. Int. J. Six Sigma Compet. Advant.; 2017; 10, pp. 258-331. [DOI: https://dx.doi.org/10.1504/IJSSCA.2017.086597]
55. Gardas, B.B.; Raut, R.D.; Narkhede, B.E. A state-of the-art survey of interpretive structural modelling methodologies and applications. Int. J. Bus. Excell.; 2017; 11, pp. 505-560. [DOI: https://dx.doi.org/10.1504/IJBEX.2017.082576]
56. Anand, A.; Bansal, G. Interpretive structural modelling for attributes of software quality. J. Adv. Manag. Res.; 2017; 14, pp. 256-269. [DOI: https://dx.doi.org/10.1108/JAMR-11-2016-0097]
57. Guan, L.; Abbasi, A.; Ryan, M.J. Analyzing green building project risk interdependencies using Interpretive Structural Modeling. J. Clean. Prod.; 2020; 256, 120372. [DOI: https://dx.doi.org/10.1016/j.jclepro.2020.120372]
58. Abuzeinab, A.; Arif, M.; Qadri, M.A. Barriers to MNEs green business models in the UK construction sector: An ISM analysis. J. Clean. Prod.; 2017; 160, pp. 27-37. [DOI: https://dx.doi.org/10.1016/j.jclepro.2017.01.003]
59. Agi, M.A.N.; Nishant, R. Understanding influential factors on implementing green supply chain management practices: An interpretive structural modelling analysis. J. Environ. Manag.; 2017; 188, pp. 351-363. [DOI: https://dx.doi.org/10.1016/j.jenvman.2016.11.081]
60. Luthra, S.; Kumar, S.; Kharb, R.; Ansari, M.F.; Shimmi, S.L. Adoption of smart grid technologies: An analysis of interactions among barriers. Renew. Sustain. Energy Rev.; 2014; 33, pp. 554-565. [DOI: https://dx.doi.org/10.1016/j.rser.2014.02.030]
61. Dewangan, D.K.; Agrawal, R.; Sharma, V. Enablers for Competitiveness of Indian Manufacturing Sector: An ISM-Fuzzy MICMAC Analysis. Procedia Soc. Behav. Sci.; 2015; 189, pp. 416-432. [DOI: https://dx.doi.org/10.1016/j.sbspro.2015.03.200]
62. Raci, V.; Shankar, R. Analysis of interactions among the barriers of reverse logistics. Technol. Forecast. Soc. Chang.; 2005; 72, pp. 1011-1029. [DOI: https://dx.doi.org/10.1016/j.techfore.2004.07.002]
63. Mathiyazhagan, K.; Govindan, K.; NoorulHaq, A.; Geng, Y. An ISM approach for the barrier analysis in implementing green supply chain management. J. Clean. Prod.; 2013; 47, pp. 283-297. [DOI: https://dx.doi.org/10.1016/j.jclepro.2012.10.042]
64. Tseng, M.-L. Modeling sustainable production indicators with linguistic preferences. J. Clean. Prod.; 2013; 40, pp. 46-56. [DOI: https://dx.doi.org/10.1016/j.jclepro.2010.11.019]
65. Muduli, K.; Govindan, K.; Barve, A.; Kannan, D.; Geng, Y. Role of behavioural factors in green supply chain management implementation in Indian mining industries. Resour. Conserv. Recycl.; 2013; 76, pp. 50-60. [DOI: https://dx.doi.org/10.1016/j.resconrec.2013.03.006]
66. Lin, L.-Z.; Yeh, H.-R. Analysis of tour values to develop enablers using an interpretive hierarchy-based model in Taiwan. Tour. Manag.; 2013; 34, pp. 133-144. [DOI: https://dx.doi.org/10.1016/j.tourman.2012.04.004]
67. Warshall, S. A theorem on boolean matrices. JACM; 1962; 9, pp. 11-12. [DOI: https://dx.doi.org/10.1145/321105.321107]
68. Sajid, Z.; Khan, F.; Zhang, Y. Integration of interpretive structural modelling with Bayesian network for biodiesel performance analysis. Renew. Energy; 2017; 107, pp. 194-203. [DOI: https://dx.doi.org/10.1016/j.renene.2017.01.058]
69. Bouzon, M.; Govindan, K.; Rodriguez, C.M.T. Reducing the extraction of minerals: Reverse logistics in the machinery manufacturing industry sector in Brazil using ISM approach. Resour. Policy; 2015; 46, pp. 27-36. [DOI: https://dx.doi.org/10.1016/j.resourpol.2015.02.001]
70. Gholami, H.; Rezaei, G.; Saman, M.Z.M.; Sharif, S.; Zakuan, N. State-of-the-art Green HRM System: Sustainability in the sports center in Malaysia using a multi-methods approach and opportunities for future research. J. Clean. Prod.; 2016; 124, pp. 142-163. [DOI: https://dx.doi.org/10.1016/j.jclepro.2016.02.105]
71. Singhal, D.; Tripathy, S.; Jena, S.K.; Nayak, K.K.; Dash, A. Interpretive structural modelling (ISM) of obstacles hindering the remanufacturing practices in India. Procedia Manuf.; 2018; 20, pp. 452-457. [DOI: https://dx.doi.org/10.1016/j.promfg.2018.02.066]
72. Toktaş-Palut, P.; Baylav, E.; Teoman, S.; Altunbey, M. The impact of barriers and benefits of e-procurement on its adoption decision: An empirical analysis. Int. J. Prod. Econ.; 2014; 158, pp. 77-90. [DOI: https://dx.doi.org/10.1016/j.ijpe.2014.07.017]
73. Denyer, D.; Tranfield, D. Producing a Systematic Review. SAGE Handb. Organ. Res. Methods; 2009; 39, pp. 672-688. [DOI: https://dx.doi.org/10.1080/03634528709378635]
74. Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes; 2006; 6, pp. 288-295. [DOI: https://dx.doi.org/10.1111/j.1471-8286.2005.01155.x]
75. Chandrupatla, T.R.; Belegundu, A.D.; Ramesh, T.; Ray, C. Introduction to Finite Elements in Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 2.
76. Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed.; 2010; 99, pp. 306-314. [DOI: https://dx.doi.org/10.1016/j.cmpb.2010.01.007] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20176408]
77. Wang, G.; Wang, Y.; Zhao, T. Analysis of interactions among the barriers to energy saving in China. Energy Policy; 2008; 36, pp. 1879-1889. [DOI: https://dx.doi.org/10.1016/j.enpol.2008.02.006]
78. Luthra, S.; Garg, D.; Haleem, A. An analysis of interactions among critical success factors to implement green supply chain management towards sustainability: An Indian perspective. Resour. Policy; 2015; 46, pp. 37-50. [DOI: https://dx.doi.org/10.1016/j.resourpol.2014.12.006]
79. Ansari, M.F.; Kharb, R.K.; Luthra, S.; Shimmi, S.L.; Chatterji, S. Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique. Renew. Sustain. Energy Rev.; 2013; 27, pp. 163-174. [DOI: https://dx.doi.org/10.1016/j.rser.2013.07.002]
80. Yadav, D.K.; Barve, A. Analysis of critical success factors of humanitarian supply chain: An application of Interpretive Structural Modeling. Int. J. Disaster Risk Reduct.; 2015; 12, pp. 213-225. [DOI: https://dx.doi.org/10.1016/j.ijdrr.2015.01.008]
81. Diabat, A.; Kannan, D.; Mathiyazhagan, K. Analysis of enablers for implementation of sustainable supply chain management—A textile case. J. Clean. Prod.; 2014; 83, pp. 391-403. [DOI: https://dx.doi.org/10.1016/j.jclepro.2014.06.081]
82. D. Vivek, S.; Banwet, D.K.; Shankar, R. Analysis of interactions among core, transaction and relationship-specific investments: The case of offshoring. J. Oper. Manag.; 2008; 26, pp. 180-197. [DOI: https://dx.doi.org/10.1016/j.jom.2007.02.010]
83. Cagno, E.; Micheli, G.J.L.; Jacinto, C.; Masi, D. An interpretive model of occupational safety performance for Small- and Medium-sized Enterprises. Int. J. Ind. Ergon.; 2014; 44, pp. 60-74. [DOI: https://dx.doi.org/10.1016/j.ergon.2013.08.005]
84. Govindan, K.; Palaniappan, M.; Zhu, Q.; Kannan, D. Analysis of third party reverse logistics provider using interpretive structural modeling. Int. J. Prod. Econ.; 2012; 140, pp. 204-211. [DOI: https://dx.doi.org/10.1016/j.ijpe.2012.01.043]
85. Jia, P.; Diabat, A.; Mathiyazhagan, K. Analyzing the SSCM practices in the mining and mineral industry by ISM approach. Resour. Policy; 2015; 46, pp. 76-85. [DOI: https://dx.doi.org/10.1016/j.resourpol.2014.04.004]
86. Shi, Q.; Yu, T.; Zuo, J.; Lai, X. Challenges of developing sustainable neighborhoods in China. J. Clean. Prod.; 2016; 135, pp. 972-983. [DOI: https://dx.doi.org/10.1016/j.jclepro.2016.07.016]
87. Shibin, K.T.; Gunasekaran, A.; Dubey, R. Explaining sustainable supply chain performance using a total interpretive structural modeling approach. Sustain. Prod. Consum.; 2017; 12, pp. 104-118. [DOI: https://dx.doi.org/10.1016/j.spc.2017.06.003]
88. Sağ, S.; Kaynak, R.; Sezen, B. Factors Affecting Multinational Team Performance. Procedia Soc. Behav. Sci.; 2016; 235, pp. 60-69. [DOI: https://dx.doi.org/10.1016/j.sbspro.2016.11.025]
89. Rajaprasad, S.V.S.; Chalapathi, P.V. Factors Influencing Implementation of OHSAS 18001 in Indian Construction Organizations: Interpretive Structural Modeling Approach. Saf. Health Work; 2015; 6, pp. 200-205. [DOI: https://dx.doi.org/10.1016/j.shaw.2015.04.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26929828]
90. Luthra, S.; Haleem, A. Hurdles in Implementing Sustainable Supply Chain Management: An Analysis of Indian Automobile Sector. Procedia Soc. Behav. Sci.; 2015; 189, pp. 175-183. [DOI: https://dx.doi.org/10.1016/j.sbspro.2015.03.212]
91. Sindhu, S.; Nehra, V.; Luthra, S. Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach. Renew. Sustain. Energy Rev.; 2016; 62, pp. 70-88. [DOI: https://dx.doi.org/10.1016/j.rser.2016.04.033]
92. Shen, L.; Song, X.; Wu, Y.; Liao, S.; Zhang, X. Interpretive Structural Modeling based factor analysis on the implementation of Emission Trading System in the Chinese building sector. J. Clean. Prod.; 2016; 127, pp. 214-227. [DOI: https://dx.doi.org/10.1016/j.jclepro.2016.03.151]
93. Ahuja, R.; Sawhney, A.; Arif, M. Prioritizing BIM Capabilities of an Organization: An Interpretive Structural Modeling Analysis. Procedia Eng.; 2017; 196, pp. 2-10. [DOI: https://dx.doi.org/10.1016/j.proeng.2017.07.166]
94. Rajesh, R. Technological capabilities and supply chain resilience of firms: A relational analysis using Total Interpretive Structural Modeling (TISM). Technol. Forecast. Soc. Chang.; 2017; 118, pp. 161-169. [DOI: https://dx.doi.org/10.1016/j.techfore.2017.02.017]
95. Jothimani, D.; Bhadani, A.K.; Shankar, R. Towards Understanding the Cynicism of Social Networking Sites: An Operations Management Perspective. Procedia Soc. Behav. Sci.; 2015; 189, pp. 117-132. [DOI: https://dx.doi.org/10.1016/j.sbspro.2015.03.206]
96. Rana, N.P.; Barnard, D.J.; Baabdullah, A.M.A.; Rees, D.; Roderick, S. Exploring barriers of m-commerce adoption in SMEs in the UK: Developing a framework using ISM. Int. J. Inf. Manag.; 2019; 44, pp. 141-153. [DOI: https://dx.doi.org/10.1016/j.ijinfomgt.2018.10.009]
97. Mondal, J.; Chakrabarti, S. Insights and anatomy of brand experience in app-based retailing (eRBX): Critical play of physical evidence and enjoyment. J. Retail. Consum. Serv.; 2021; 60, 102484. [DOI: https://dx.doi.org/10.1016/j.jretconser.2021.102484]
98. Naveed, Q.N.; Ahmad, N.; Qamar, S.; Khan, N.; Naim, A.; Hussain, M.R.; Qureshi, M.R.N.; Alsayed, A.O.; Mohiuddin, K. Relationship modeling for OSN-based E-Learning Deployment. Proceedings of the 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS); Kuala Lumpur, Malaysia, 20–21 December 2019; pp. 1-7.
99. Ahmad, N.; Hoda, N.; Alahmari, F. Developing a Cloud-Based Mobile Learning Adoption Model to Promote Sustainable Education. Sustainability; 2020; 12, 3126. [DOI: https://dx.doi.org/10.3390/su12083126]
100. Ahmad, N. The Structural Modeling of Significant Factors for Sustainable Cloud Migration. Int. J. Intell. Eng. Syst.; 2021; 14, pp. 1-10. [DOI: https://dx.doi.org/10.22266/ijies2021.0430.01]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Interpretive Structural Modeling (ISM) is a technique to establish the interrelationships between elements of interest in a specific domain through experts’ knowledge of the context of the elements. This technique has been applied in numerous domains and the list continues to grow due to its simplistic concept, while sustainability has taken the lead. The partially automated or manual application of this technique has been prone to errors as witnessed in the literature due to a series of mathematical steps of higher-order computing complexity. Therefore, this work proposes to develop an end-to-end graphical software, SmartISM, to implement ISM technique and MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to classification)), generally applied along with ISM to classify variables. Further, a scoping review has been conducted to study the applications of ISM in the previous studies using Denyer and Tranfield’s (2009) framework and newly developed SmartISM. For the development of SmartISM, Microsoft Excel software has been used, and relevant algorithms and VBA (Visual Basic for Applications) functions have been illustrated. For the transitivity calculation the Warshall algorithm has been used and a new algorithm reduced conical matrix has been introduced to remove edges while retaining the reachability of variables and structure of digraph in the final model. The scoping review results demonstrate 21 different domains such as sustainability, supply chain and logistics, information technology, energy, human resource, marketing, and operations among others; numerous types of constructs such as enablers, barriers, critical success factors, strategies, practices, among others, and their numbers varied from 5 to 32; number of decision makers ranged between 2 to 120 with a median value of 11, and belong to academia, industry, and/or government; and usage of multiple techniques of discourse and survey for decision making and data collection. Furthermore, the SmartISM reproduced results show that only 29 out of 77 studies selected have a correct application of ISM after discounting the generalized transitivity incorporation. The outcome of this work will help in more informed applications of this technique in newer domains and utilization of SmartISM to efficiently model the interrelationships among variables.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer