Full Text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The stock market is one of the key sectors of a country's economy. It provides investors with an opportunity to invest and gain returns on their investment. Predicting the stock market is a very challenging task and has attracted serious interest from researchers from many fields such as statistics, artificial intelligence, economics, and finance. An accurate prediction of the stock market reduces investment risk in the market. Different approaches have been used to predict the stock market. The performances of Machine learning (ML) models are typically superior to those of statistical and econometric models. The ability of Gaussian Naive Bayes ML algorithm to predict stock price movement has not been addressed properly in the existing literature, hence this attempt to fill that gap in the literature by evaluating the performance of GNB algorithm when combined with different feature scaling and feature extraction techniques in stock price movement prediction. The performance of the GNB models set up were ranked using the Kendall's test of concordance for the various evaluation metrics used. The results indicated that, the predictive model based on integration of GNB algorithm and Linear Discriminant Analysis (GNB LDA) outperformed all the other models of GNB considered in three of the four evaluation metrics (i.e., accuracy, F1-score, and AUC). Similarly, the predictive model based on GNB algorithm, Min-Max scaling, and PCA produced the best rank using the specificity results. In addition, GNB produced better performance with Min-Max scaling technique than it does with standardization scaling techniques

Details

Title
Stock Market Prediction with Gaussian Naïve Bayes Machine Learning Algorithm
Author
Ampomah, Ernest Kwame 1 ; Nyame, Gabriel 2 ; Qin, Zhiguang 1 ; Addo, Prince Clement 3 ; Gyamfi, Enoch Opanin 1 ; Gyan, Michael

 School of Information & Software Engineering, University of Electronic Science and Technology of China, China 
 Department of Information Technology Education Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Kumasi-Ghana 
 School of Management and Economics, University of Electronic Science and Technology of China, China 
Pages
243-256
Publication year
2021
Publication date
Jun 2021
Publisher
Slovenian Society Informatika / Slovensko drustvo Informatika
ISSN
03505596
e-ISSN
18543871
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2569702721
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.