Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Heartbeat detection is the first step in automatic analysis of the electrocardiogram (ECG). For mobile and wearable devices, the detection process should be both accurate and computationally efficient. In this paper, we present a QRS detection algorithm based on moving average filters, which affords a simple yet robust signal processing technique. The decision logic considers the rhythmic and morphological features of the QRS complex. QRS enhancing is performed with channel-specific moving average cascades selected from a pool of derivative systems we designed. We measured the effectiveness of our algorithm on well-known benchmark databases, reporting F1 scores, sensitivity on abnormal beats and processing time. We also evaluated the performances of other available detectors for a direct comparison with the same criteria. The algorithm we propose achieved satisfying performances on par with or higher than the other QRS detectors. Despite the performances we report are not the highest that have been published so far, our approach to QRS detection enhances computational efficiency while maintaining high accuracy.

Details

Title
QRS Detection Based on Medical Knowledge and Cascades of Moving Average Filters
Author
Bachi, Lorenzo 1   VIAFID ORCID Logo  ; Billeci, Lucia 2   VIAFID ORCID Logo  ; Varanini, Maurizio 2 

 Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy; [email protected] 
 Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy; [email protected] 
First page
6995
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558628650
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.