Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Defect detection is the most important step in the postpartum reprocessing of kiwifruit. However, there are some small defects difficult to detect. The accuracy and speed of existing detection algorithms are difficult to meet the requirements of real-time detection. For solving these problems, we developed a defect detection model based on YOLOv5, which is able to detect defects accurately and at a fast speed. The main contributions of this research are as follows: (1) a small object detection layer is added to improve the model’s ability to detect small defects; (2) we pay attention to the importance of different channels by embedding SELayer; (3) the loss function CIoU is introduced to make the regression more accurate; (4) under the prerequisite of no increase in training cost, we train our model based on transfer learning and use the CosineAnnealing algorithm to improve the effect. The results of the experiment show that the overall performance of the improved network YOLOv5-Ours is better than the original and mainstream detection algorithms. The [email protected] of YOLOv5-Ours has reached 94.7%, which was an improvement of nearly 9%, compared to the original algorithm. Our model only takes 0.1 s to detect a single image, which proves the effectiveness of the model. Therefore, YOLOv5-Ours can well meet the requirements of real-time detection and provides a robust strategy for the kiwi flaw detection system.

Details

Title
A Real-Time Detection Algorithm for Kiwifruit Defects Based on YOLOv5
Author
Yao, Jia 1 ; Qi, Jiaming 1 ; Zhang, Jie 1 ; Shao, Hongmin 1   VIAFID ORCID Logo  ; Yang, Jia 2   VIAFID ORCID Logo  ; Li, Xin 1 

 College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China; [email protected] (J.Y.); [email protected] (J.Q.); [email protected] (H.S.); [email protected] (X.L.); Sichuan Key Laboratory of Agricultural Information Engineering, Ya’an 625000, China 
 School of Computing, National University of Singapore, Singapore 119077, Singapore; [email protected] 
First page
1711
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554493999
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.