Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The 1,3,4-thiadiazole derivatives (9ai) were synthesized under solvent free conditions and their chemical composition was confirmed using different spectral tools (IR, Mass, and NMR spectrometry). All the synthesized compounds were screened for their anti-cancer potentiality over human breast carcinoma (MCF-7) and human lung carcinoma (A-549). Most of the tested compounds showed remarkable anti-breast cancer activity. However, compound 4 showed the most anti-lung cancer activity. Then, compounds with cytotoxic activity ≥ 80% over breast and lung cells were subjected to investigate their specificity on human normal skin cell line (BJ-1). Compounds 9b and 9g were chosen owing to their high breast anti-cancer efficacy and their safety, in order to study the possible anti-cancer mode of action. Otherwise, drug delivery provides a means to overcome the low solubility, un-targeted release, and limited bioavailability of the prepared 1,3,4-thiadiazole drug-like substances. Compounds 9b and 9g were chosen to be encapsulated in Na-alginate microspheres. The release profile and mechanism of both compounds were investigated, and the results revealed that the release profiles of both microspheres showed a sustained release, and the release mechanism was controlled by Fickian diffusion. Accordingly, these compounds are promising for their use in chemotherapy for cancer treatment, and their hydrophilicity was improved by polymer encapsulation to become more effective in their pharmaceutical application.

Details

Title
Toward Rational Design of Novel Anti-Cancer Drugs Based on Targeting, Solubility, and Bioavailability Exemplified by 1,3,4-Thiadiazole Derivatives Synthesized Under Solvent-Free Conditions
Author
Rashdan, Huda RM 1   VIAFID ORCID Logo  ; Farag, Mohammad M 2 ; El-Gendey, Marwa S 3 ; Mounier, Marwa M 4 

 Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt 
 Glass Research Department, National Research Centre, 33 El-Behooth Str., Dokki, Cairo 12622, Egypt 
 Chemistry Department, Faculty of Science “Girls”, Al-Azhar University, Cairo 11754, Egypt; Chemistry Department, Faculty of College, Turabah, Taif University, Taif 21974, Saudi Arabia 
 Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt 
First page
2371
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549047095
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.