Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since the persistently increasing trend of energy consumption, technologies for renewable energy production and conversion have drawn great attention worldwide. The performance and the cost of electrocatalysts play two crucial roles in the globalization of advanced energy conversion devices. Among the developed technics involving metal catalysts, transition-metal catalysts (TMC) are recognized as the most promising materials due to the excellent properties and stability. Particularly, the iron–cobalt bimetal catalysts exhibit exciting electrochemical properties because of the interior cooperative effects. Herein, we summarize recent advances in iron–cobalt bimetal catalysts for electrochemical applications, especially hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Moreover, the components and synergetic effects of the composites and catalytic mechanism during reaction processes are highlighted. On the basis of extant catalysts and mechanism, the current issues and prospective outlook of the field are also discussed.

Details

Title
Bimetallic Iron–Cobalt Catalysts and Their Applications in Energy-Related Electrochemical Reactions
Author
Peng, Wenchao  VIAFID ORCID Logo  ; Zhang, Guoliang; Zhang, Fengbao
First page
762
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547605462
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.