Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As key equipment in modern industry, it is important to diagnose and predict the health status of bearings. Data-driven methods for remaining useful life (RUL) prognostics have achieved excellent performance in recent years compared to traditional methods based on physical models. In this paper, we propose a novel data-driven method for predicting the remaining useful life of bearings based on a deep graph convolutional neural network with spatiotemporal domain convolution. This network uses the average sliding root mean square (ASRMS) as the health factor to identify the healthy and degraded states, and then uses correlation coefficient analysis on the hybrid features of the degraded data to construct a spatial graph according to the strength of the correlation between the obtained features. In the time domain, we introduce historical data as the input to the temporal convolution. After the data are processed by the spatial map and the temporal dimension, we perform the prediction of the remaining useful life. The experimental results show the accuracy of the method.

Details

Title
Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network
Author
Li, Peihong; Yang, Yinghua  VIAFID ORCID Logo 
First page
4217
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545186792
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.