Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we propose a methodology for generative enhancement of existing 3D image classifiers. This methodology is based on combining the advantages of both non-generative classifiers and generative modeling. Its purpose is to streamline the synthesis of novel deep neural networks by embedding existing compatible classifiers into a generative network architecture. A demonstration of this process and evaluation of its effectiveness is performed using a 3D convolutional classifier and its generative equivalent—a 3D conditional generative adversarial network classifier. The results of the experiments show that the generative classifier delivers higher performance, gaining a relative classification accuracy improvement of 7.43%. An increase of accuracy is also observed when comparing it to a plain convolutional classifier that was trained on a dataset augmented with samples created by the trained generator. This suggests a desirable knowledge sharing mechanism exists within the hybrid discriminator-classifier network.

Details

Title
Generative Enhancement of 3D Image Classifiers
Author
Jadlovský, Ján
First page
7433
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2534074409
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.