Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Road segmentation for synthetic aperture radar (SAR) images is of great practical significance. With the rapid development and wide application of SAR imaging technology, this problem has attracted much attention. At present, there are numerous road segmentation methods. This paper analyzes and summarizes the road segmentation methods for SAR images over the years. Firstly, the traditional road segmentation algorithms are classified according to the degree of automation and the principle. Advantages and disadvantages are introduced successively for each traditional method. Then, the popular segmentation methods based on deep learning in recent years are systematically introduced. Finally, novel deep segmentation neural networks based on the capsule paradigm and the self-attention mechanism are forecasted as future research for SAR images.

Details

Title
Review of Road Segmentation for SAR Images
First page
1011
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2500234718
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.