Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Conventional bridge maintenance requires significant time and effort because it involves manual inspection and two-dimensional drawings are used to record any damage. For this reason, a process that identifies the location of the damage in three-dimensional space and classifies the bridge components involved is required. In this study, three deep-learning models—PointNet, PointCNN, and Dynamic Graph Convolutional Neural Network (DGCNN)—were compared to classify the components of bridges. Point cloud data were acquired from three types of bridge (Rahmen, girder, and gravity bridges) to determine the optimal model for use across all three types. Three-fold cross-validation was employed, with overall accuracy and intersection over unions used as the performance measures. The mean interval over unit value of DGCNN is 86.85%, which is higher than 84.29% of Pointnet, 74.68% of PointCNN. The accurate classification of a bridge component based on its relationship with the surrounding components may assist in identifying whether the damage to a bridge affects a structurally important main component.

Details

Title
Deep-Learning-Based Classification of Point Clouds for Bridge Inspection
First page
3757
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2462586170
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.