Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Precise gene editing is—or will soon be—in clinical use for several diseases, and more applications are under development. The programmable nuclease Cas9, directed by a single-guide RNA (sgRNA), can introduce double-strand breaks (DSBs) in target sites of genomic DNA, which constitutes the initial step of gene editing using this novel technology. In mammals, two pathways dominate the repair of the DSBs—nonhomologous end joining (NHEJ) and homology-directed repair (HDR)—and the outcome of gene editing mainly depends on the choice between these two repair pathways. Although HDR is attractive for its high fidelity, the choice of repair pathway is biased in a biological context. Mammalian cells preferentially employ NHEJ over HDR through several mechanisms: NHEJ is active throughout the cell cycle, whereas HDR is restricted to S/G2 phases; NHEJ is faster than HDR; and NHEJ suppresses the HDR process. This suggests that definitive control of outcome of the programmed DNA lesioning could be achieved through manipulating the choice of cellular repair pathway. In this review, we summarize the DSB repair pathways, the mechanisms involved in choice selection based on DNA resection, and make progress in the research investigating strategies that favor Cas9-mediated HDR based on the manipulation of repair pathway choice to increase the frequency of HDR in mammalian cells. The remaining problems in improving HDR efficiency are also discussed. This review should facilitate the development of CRISPR/Cas9 technology to achieve more precise gene editing.

Details

Title
Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks
Author
Yang, Han; Ren, Shuling; Yu, Siyuan; Pan, Haifeng; Li, Tingdong; Ge, Shengxiang; Zhang, Jun; Xia, Ningshao  VIAFID ORCID Logo 
First page
6461
Publication year
2020
Publication date
2020
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2441161409
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.