Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Smart buildings are equipped with sensors that allow monitoring a range of building systems including heating and air conditioning, lighting and the general electric energy consumption. Thees data can then be stored and analyzed. The ability to use historical data regarding electric energy consumption could allow improving the energy efficiency of such buildings, as well as help to spot problems related to wasting of energy. This problem is even more important when considering that buildings are some of the largest consumers of energy. In this paper, we are interested in forecasting the energy consumption of smart buildings, and, to this aim, we propose a comparative study of different forecasting strategies that can be used to this aim. To do this, we used the data regarding the electric consumption registered by thirteen buildings located in a university campus in the south of Spain. The empirical comparison of the selected methods on the different data showed that some methods are more suitable than others for this kind of problem. In particular, we show that strategies based on Machine Learning approaches seem to be more suitable for this task.

Details

Title
A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings
Author
Federico Divina  VIAFID ORCID Logo  ; Miguel García Torres  VIAFID ORCID Logo  ; Goméz Vela, Francisco A  VIAFID ORCID Logo  ; Vázquez Noguera, José Luis  VIAFID ORCID Logo 
First page
1934
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403259420
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.