Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

3D shape recognition becomes necessary due to the popularity of 3D data resources. This paper aims to introduce the new method, hybrid deep learning network convolution neural network–support vector machine (CNN–SVM), for 3D recognition. The vertices of the 3D mesh are interpolated to be converted into Point Clouds; those Point Clouds are rotated for 3D data augmentation. We obtain and store the 2D projection of this 3D augmentation data in a 32 × 32 × 12 matrix, the input data of CNN–SVM. An eight-layer CNN is used as the algorithm for feature extraction, then SVM is applied for classifying feature extraction. Two big datasets, ModelNet40 and ModelNet10, of the 3D model are used for model validation. Based on our numerical experimental results, CNN–SVM is more accurate and efficient than other methods. The proposed method is 13.48% more accurate than the PointNet method in ModelNet10 and 8.5% more precise than 3D ShapeNets for ModelNet40. The proposed method works with both the 3D model in the augmented/virtual reality system and in the 3D Point Clouds, an output of the LIDAR sensor in autonomously driving cars.

Details

Title
A 3D Shape Recognition Method Using Hybrid Deep Learning Network CNN–SVM
Author
Long, Hoang  VIAFID ORCID Logo  ; Suk-Hwan, Lee; Kwon, Ki-Ryong
First page
649
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2392124728
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.