Content area

Abstract

The histological analysis of tissue samples, widely used for disease diagnosis, involves lengthy and laborious tissue preparation. Here, we show that a convolutional neural network trained using a generative adversarial-network model can transform wide-field autofluorescence images of unlabelled tissue sections into images that are equivalent to the bright-field images of histologically stained versions of the same samples. A blind comparison, by board-certified pathologists, of this virtual staining method and standard histological staining using microscopic images of human tissue sections of the salivary gland, thyroid, kidney, liver and lung, and involving different types of stain, showed no major discordances. The virtual-staining method bypasses the typically labour-intensive and costly histological staining procedures, and could be used as a blueprint for the virtual staining of tissue images acquired with other label-free imaging modalities.

Deep learning can be used to virtually stain autofluorescence images of unlabelled tissue sections, generating images that are equivalent to the histologically stained versions.

Details

Title
Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning
Author
Rivenson Yair 1   VIAFID ORCID Logo  ; Wang, Hongda 1   VIAFID ORCID Logo  ; Zhensong, Wei 2 ; de Haan Kevin 1   VIAFID ORCID Logo  ; Zhang, Yibo 1   VIAFID ORCID Logo  ; Wu, Yichen 1   VIAFID ORCID Logo  ; Günaydın Harun 2 ; Zuckerman, Jonathan E 3 ; Chong, Thomas 3 ; Sisk, Anthony E 3 ; Westbrook, Lindsey M 3 ; Dean, Wallace W 3 ; Ozcan Aydogan 4   VIAFID ORCID Logo 

 University of California, Los Angeles, Electrical and Computer Engineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Los Angeles, Bioengineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Los Angeles, California NanoSystems Institute, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Los Angeles, Electrical and Computer Engineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Los Angeles, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Los Angeles, Electrical and Computer Engineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Los Angeles, Bioengineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Los Angeles, California NanoSystems Institute, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Los Angeles, Department of Surgery, David Geffen School of Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
Pages
466-477
Publication year
2019
Publication date
Jun 2019
Publisher
Nature Publishing Group
e-ISSN
2157846X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2389675505
Copyright
© The Author(s), under exclusive licence to Springer Nature Limited 2019.