This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
In the healthy left anterior descending (LAD) coronary arteries, surface roughness has recently been characterised [1]. Surface roughness can be used as a standard for the development of cardiovascular bioinspired materials used in the design of novel vascular implants for clinical treatment of vascular diseases. There is also the potential to use it to assess whether any physical or chemical changes have occurred to the surface.
Coronary artery disease is the leading cause of mortality worldwide [2]. Narrowing of the arteries such as the LAD coronary artery can result in cardiac hypoxia and impaired contractile function and increases the risk of myocardial infarction [3]. The LAD coronary artery provides a major blood supply to the myocardium [4]. Angioplasty is a procedure used to widen the blocked arteries; however, the procedure is prone to restenosis (the reoccurrence of stenosis), due to damage caused by the procedure. Inflation of the vessel can cause elastic recoil in 25-30% of patients, resulting in the narrowing of vessels at around 6 months. In more extreme cases, restenosis can occur within 24 hours of surgery due to vessel dissection or thrombus formation [5].
The mechanical behaviour of the coronary arteries can be characterised through uniaxial testing [6] which is a commonly chosen methodology for these arteries [4, 7–9]. Porcine models are typically employed because of their anatomic similarity to the human hearts [8]. The results from the uniaxial tests can be used to distinguish between the healthy and diseased arteries [10], with much interest in clinical translation via elastography [11]. There is also clinical interest in assessing the effect of mechanical overload on the arteries [9], which has implications for improved treatment outcomes of coronary artery disease.
Suitable bulk materials for coronary artery replacement are emerging [12]. There is potential for replication via emerging techniques [13], including additive manufacture of materials which are biocompatible [14]. As 30–40% of patients do not have a viable vein for replacement [15], new replacement strategies may be important. Biomaterials, though, are subject to surface degradation [16]; however, surface properties are so far mostly ignored.
The physical properties of the surfaces of the materials are usually quantified through their mean surface roughness,
The aim of this study was to inflict mechanical damage on the LAD coronary arteries, to mimic the initial rupture of an artery and assess changes in surface roughness. Further, chemical treatment and mechanical loading are compared to determine their effect on the surface roughness of arteries, as chemical treatment is common with the arteries [22].
2. Methods
2.1. Specimens
No animals were sacrificed specifically for this study. The porcine hearts (obtained from animals approximately between 6 and 12 months old) were supplied by Fresh Tissue Supplies (Horsham, UK). Ethical approval was granted for this study by the University of Birmingham Research Support Group (ERN_15-0032). The hearts were defrosted at approximately 4°C overnight before dissection. The LAD coronary artery was identified and dissected (Figure 1) from the most distal point visible to the bifurcation of the LAD coronary artery and the left circumflex coronary artery (LCX). A longitudinal incision (along the length of the artery) was made along the LAD sample to expose its internal surface (Figure 2). Excess cardiac muscle tissue was removed from samples leaving the coronary artery tissue only. Additionally, specimens were imaged after processing, involving fixation, where for effective fixation of biological tissue the thickness of tissue samples should be less than 2-3 mm [24]. Finally, the sample was sectioned into three specimens of 20 mm each. These tissue samples were categorised as proximal, middle, and distal where in this case proximal refers to a position nearer the base of the heart and distal near to the apex of the heart, along a longitudinal axis of the LAD coronary artery (Figure 2). Dimensions of the specimens were measured along its length (
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
Tissue samples were wrapped in tissue paper soaked in Ringer’s solution (Oxoid Ltd., Basingstoke, UK) and stored in heat-sealed bags at -40°C until required for microscopy. Before further testing, tissue samples were defrosted at 4°C for an hour, following protocols from previous studies of porcine heart tissue [25–28].
2.2. Tissue Processing
A standard protocol for fixation and dehydration of soft mammalian tissues was followed [24]. These methods for tissue processing are described in further detail elsewhere [1, 22]. Briefly, specimens were immersed in a 3% glutaraldehyde solution (Fluka Analytical, Sigma-Aldrich, St. Louis, MO, USA) with a 0.2 M sodium phosphate buffer (1 hour at pH 7.4) [29] and washed using phosphate-buffered saline (PBS) solution. Samples remained hydrated via storage in PBS solution (4°C until dehydration). Dehydration was performed by using an increased concentration of ethanol (Fisher Chemical, Fisher Scientific UK Ltd., Loughborough, UK) at 30%, 50%, 70%, 95%, and
2.3. Imaging
A noncontact, three-dimensional (3D) optical focus variation microscope (G4 Infinite Focus, Alicona UK, Kent, UK) was used to obtain three-dimensional (3D) images of the specimens at 10x magnification (10x Nikon CFI 60 TU Plan Epi Infinity Corrected Obj lens, Alicona UK, Kent, UK) and analyse their surfaces [32, 33]. Further detail and explanation of the methods used for optical imaging are provided elsewhere [1, 22]. Briefly, scans focused between the minimum and maximum heights of each sample (
2.4. Surface Roughness
The
Specimens were imaged before and after damage. From the 3D reconstructed images,
2.5. Mechanical Testing
Specimens were held in place for testing using grips lined with emery paper (P400 and P60) leaving an unstretched gauge length (
[figures omitted; refer to PDF]
To replicate the diseased coronary arteries, damage was inflicted on specimens through uniaxial overloading of specimens using Bose ElectroForce 3200 in their longitudinal orientation. The 6 porcine hearts (
2.6. Statistics
The final analysis of data was performed using Minitab Statistical Software (Minitab 17.0, Minitab Inc., State College, PA, USA) on the surface roughness results of the damaged specimens. Student’s
3. Results
A significant difference was identified between
Table 1
Mean average
Hydrated healthy | ||
Hydrated damaged | ||
Dehydrated damaged |
† indicates the result is significantly greater than both their hydrated damaged and healthy values.
[figure omitted; refer to PDF][figures omitted; refer to PDF]
[figures omitted; refer to PDF]
The control undamaged specimens had a significantly greater
4. Discussion
This is the first study to evaluate whether there is a potential relationship between the mechanical overload of the coronary arteries, leading to failure, and their surface roughness. Although two previous studies have detailed techniques for the measurement of surface roughness, they did not assess how any mechanical overload might alter their surface roughness [1, 22]. This current study has used the recently established technique for measuring
The results of this study found a significant increase in
The protocol for storing soft tissue by freezing used in the present study followed standard protocols used by other studies of porcine heart tissue [25, 26]. Freezing prevents the degradation of biological tissues which require storage [42]. Clark noted stiffening of vascular tissue when comparing frozen to fresh human aortic and mitral leaflets and chordae [43]. However, there was extensive overlap in results from the fresh and frozen specimens in Clark’s results. Further, other studies have noted that any effects of freezing soft connective tissues are outweighed by the standard deviation of the original measurements [44]. In previous work, surface roughness of the arteries was not affected by a freeze-thaw cycle but a correction factor was necessary to correct for surface roughness when the tissue was dehydrated subsequent to glutaraldehyde-based cross-linking [22]. Cardiovascular tissues cross-linked using glutaraldehyde are known to have altered mechanical properties [45] which may explain the increase in surface roughness found in this current study.
Quantification of surface roughness properties can be combined to model disease of the coronary arteries through computational simulation. The measurements can provide a standard for bioinspired materials to adhere to, ensuring physiological similarity to native tissue. These properties are important for the development of clinical treatments through novel designs of vascular implants (e.g., stents and grafts) and tissue-engineered replacements [4]. This study also outlines a “physiological” range for surface roughness, as opposed to what may be the surface roughness of a mechanically impaired surface. These measurements, thus, should be considered during generation of bioinspired devices which are to be placed on the endothelial surface of the arteries.
It is important to consider the physiological loading conditions of biomaterials that are designed to replicate the coronary arteries. Damage can be caused by uniaxial mechanical overloading that can be noticed as an increase in surface roughness along the axis of loading. However, chemical processing, specifically dehydration, results in a significant increase in surface roughness in the circumferential direction. In other studies, changes have been noted in the surface roughness of various biological tissues due to disease [23, 46]. Therefore, a valid assumption is that disease of the coronary arteries, which can cause damage to the surface of the endothelium through the formation of atherosclerotic lesions, for example, would also result in changes to surface roughness.
Future work should investigate if mechanical damage inflicted in the circumferential direction results in an increase in
5. Conclusions
In conclusion, chemical processing had a greater effect on surface roughness than mechanical damage within the specified range of testing. Mechanical testing alone did not significantly alter surface roughness. Independently, chemical processing does not affect surface roughness in the longitudinal direction (undamaged
Disclosure
The initial findings from this work were first disseminated via an abstract/presentation at the 8th World Congress of Biomechanics (Dublin, Ireland), July 2018.
Conflicts of Interest
The authors declare that there was no conflict of interest.
Acknowledgments
HEB was funded by an Engineering and Physical Sciences Research Council scholarship (M114612B). The materials and testing equipment used in this study was funded by an Arthritis Research UK grant (H0671). This study was partly funded by an Innovation and Research Award from the Institute of Physics and Engineering in Medicine.
[1] H. E. Burton, J. M. Freij, D. M. Espino, "Dynamic viscoelasticity and surface properties of porcine left anterior descending coronary arteries," Cardiovascular Engineering and Technology, vol. 8 no. 1, pp. 41-56, DOI: 10.1007/s13239-016-0288-4, 2017.
[2] J. Mackay, G. A. Mensah, The Atlas of Heart Disease and Stroke, 2004.
[3] R. Klabunde, Cardiovascular Physiology Concepts, 2011.
[4] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, "Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling," American Journal of Physiology-Heart and Circulatory Physiology, vol. 289 no. 5, pp. H2048-H2058, DOI: 10.1152/ajpheart.00934.2004, 2005.
[5] H. Hamid, J. Coltart, "‘Miracle stents’-a future without restenosis," McGill Journal of Medicine: MJM, vol. 10, 2007.
[6] J. M. Freij, H. E. Burton, D. M. Espino, "Objective uniaxial identification of transition points in non-linear materials: sample application to porcine coronary arteries and the dependency of their pre- and post-transitional moduli with position," Cardiovascular Engineering and Technology,DOI: 10.1007/s13239-018-00395-x, 2018.
[7] C. Lally, A. J. Reid, P. J. Prendergast, "Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension," Annals of Biomedical Engineering, vol. 32 no. 10, pp. 1355-1364, DOI: 10.1114/B:ABME.0000042224.23927.ce, 2004.
[8] I. Ozolanta, G. Tetere, B. Purinya, V. Kasyanov, "Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex," Medical Engineering & Physics, vol. 20 no. 7, pp. 523-533, DOI: 10.1016/S1350-4533(98)00050-2, 1998.
[9] C. J. Van Andel, P. V. Pistecky, C. Borst, "Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors," The Annals of Thoracic Surgery, vol. 76 no. 1, pp. 58-64, DOI: 10.1016/S0003-4975(03)00263-7, 2003.
[10] A. Karimi, M. Navidbakhsh, A. Shojaei, S. Faghihi, "Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries," Materials Science & Engineering. C, Materials for Biological Applications, vol. 33 no. 5, pp. 2550-2554, DOI: 10.1016/j.msec.2013.02.016, 2013.
[11] L. E. J. Thomas-Seale, L. Hollis, D. Klatt, I. Sack, N. Roberts, P. Pankaj, P. R. Hoskins, "The simulation of magnetic resonance elastography through atherosclerosis," Journal of Biomechanics, vol. 49 no. 9, pp. 1781-1788, DOI: 10.1016/j.jbiomech.2016.04.013, 2016.
[12] M. Desai, A. M. Seifalian, G. Hamilton, "Role of prosthetic conduits in coronary artery bypass grafting," European Journal of Cardio-Thoracic Surgery, vol. 40 no. 2, pp. 394-398, DOI: 10.1016/j.ejcts.2010.11.050, 2011.
[13] L. E. J. Thomas-Seale, J. C. Kirkman-Brown, M. M. Attallah, D. M. Espino, D. E. T. Shepherd, "The barriers to the progression of additive manufacture: perspectives from UK industry," International Journal of Production Economics, vol. 198, pp. 104-118, DOI: 10.1016/j.ijpe.2018.02.003, 2018.
[14] R. Jewkes, H. Burton, D. Espino, "Towards additive manufacture of functional, spline-based morphometric models of healthy and diseased coronary arteries: in vitro proof-of-concept using a porcine template," Journal of Functional Biomaterials, vol. 9 no. 1,DOI: 10.3390/jfb9010015, 2018.
[15] P. L. Faries, F. W. LoGerfo, S. Arora, M. C. Pulling, D. I. Rohan, C. M. Akbari, D. R. Campbell, G. W. Gibbons, F. B. Pomposelli, "Arm vein conduit is superior to composite prosthetic-autogenous grafts in lower extremity revascularization," Journal of Vascular Surgery, vol. 31 no. 6, pp. 1119-1127, DOI: 10.1067/mva.2000.106488, 2000.
[16] R. M. Dorrepaal, B. M. Lawless, H. E. Burton, D. M. Espino, D. E. T. Shepherd, A. A. Gowen, "Hyperspectral chemical imaging reveals spatially varied degradation of polycarbonate urethane (PCU) biomaterials," Acta Biomaterialia, vol. 73, pp. 81-89, DOI: 10.1016/j.actbio.2018.03.045, 2018.
[17] A. Solouk, B. G. Cousins, H. Mirzadeh, M. Solati-Hashtjin, S. Najarian, A. M. Seifalian, "Surface modification of POSS-nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications," Biotechnology and Applied Biochemistry, vol. 58 no. 3, pp. 147-161, DOI: 10.1002/bab.22, 2011.
[18] D. G. Eckold, K. D. Dearn, D. E. T. Shepherd, "The evolution of polymer wear debris from total disc arthroplasty," Biotribology, vol. 1-2, pp. 42-50, DOI: 10.1016/j.biotri.2015.04.002, 2015.
[19] B. Karpuschewski, K. Schmidt, J. Beňo, I. Maňková, R. Frohmüller, J. Prilukova, "An approach to the microscopic study of wear mechanisms during hard turning with coated ceramics," Wear, vol. 342-343, pp. 222-233, DOI: 10.1016/j.wear.2015.08.021, 2015.
[20] S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, D. E. T. Shepherd, "Investigation of techniques for the measurement of articular cartilage surface roughness," Micron, vol. 44, pp. 179-184, DOI: 10.1016/j.micron.2012.06.007, 2013.
[21] Z. Peng, M. Wang, "Three dimensional surface characterization of human cartilages at a micron and nanometre scale," Wear, vol. 301 no. 1-2, pp. 210-217, DOI: 10.1016/j.wear.2012.11.056, 2013.
[22] H. E. Burton, R. L. Williams, D. M. Espino, "Effects of freezing, fixation and dehydration on surface roughness properties of porcine left anterior descending coronary arteries," Micron, vol. 101, pp. 78-86, DOI: 10.1016/j.micron.2017.06.009, 2017.
[23] S. Bertazzo, E. Gentleman, K. L. Cloyd, A. H. Chester, M. H. Yacoub, M. M. Stevens, "Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification," Nature Materials, vol. 12 no. 6, pp. 576-583, DOI: 10.1038/nmat3627, 2013.
[24] S. F. Beck, Electrón Microscopy: A Handbook of Techniques for the Biologist, 1998.
[25] L. Millard, D. M. Espino, D. E. T. Shepherd, D. W. L. Hukins, K. G. Buchan, "Mechanical properties of chordae tendineae of the mitral heart valve: Young’s modulus, structural stiffness, and effects of aging," Journal of Mechanics in Medicine and Biology, vol. 11 no. 01, pp. 221-230, DOI: 10.1142/S0219519411003971, 2011.
[26] D. M. Espino, D. E. T. Shepherd, K. G. Buchan, "Effect of mitral valve geometry on valve competence," Heart and Vessels, vol. 22 no. 2, pp. 109-115, DOI: 10.1007/s00380-006-0937-x, 2007.
[27] D. M. Espino, D. W. L. Hukins, D. E. T. Shepherd, M. A. Watson, K. Buchan, "Determination of the pressure required to cause mitral valve failure," Medical Engineering & Physics, vol. 28 no. 1, pp. 36-41, DOI: 10.1016/j.medengphy.2005.04.011, 2006.
[28] D. M. Espino, D. E. T. Shepherd, D. W. L. Hukins, K. G. Buchan, "The role of chordae tendineae in mitral valve competence," The Journal of heart valve disease, vol. 14, pp. 603-609, 2005.
[29] M. A. Hayat, Principles and Techniques of Electron Microscopy, 1981.
[30] D. Bucher, M. Scholz, M. Stetter, K. Obermayer, H. J. Pflüger, "Correction methods for three-dimensional reconstructions from confocal images: I. tissue shrinking and axial scaling," Journal of Neuroscience Methods, vol. 100 no. 1-2, pp. 135-143, DOI: 10.1016/S0165-0270(00)00245-4, 2000.
[31] P. Moran, B. Coats, "Biological sample preparation for SEM imaging of porcine retina," Microscopy Today, vol. 20 no. 02, pp. 28-31, DOI: 10.1017/S1551929511001374, 2012.
[32] Alicona, "Infinite focus technical specification," 2014. http://www.alicona.com/home/fileadmin/alicona/pdfs/InfiniteFocusG5_System_and_technical_specification_E.pdf
[33] F. Hiersemenzel, J. N. Petzing, R. K. Leach, F. Helmli, J. Singh, "Areal texture and angle measurements of tilted surfaces using focus variation methods," 3rd International Conference on Surface Metrology, .
[34] H. Schroettner, M. Schmied, S. Scherer, "Comparison of 3D surface reconstruction data from certified depth standards obtained by SEM and an infinite focus measurement machine (IFM)," Microchimica Acta, vol. 155 no. 1-2, pp. 279-284, DOI: 10.1007/s00604-006-0556-3, 2006.
[35] ISO, 4287, Geometrical Product Specifications (GPS)-Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters, 2009.
[36] A. G. Wilcox, K. G. Buchan, D. M. Espino, "Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae," Journal of the Mechanical Behavior of Biomedical Materials, vol. 30, pp. 186-195, DOI: 10.1016/j.jmbbm.2013.11.013, 2014.
[37] T. Konta, J. H. N. Bett, "Patterns of coronary artery movement and the development of coronary atherosclerosis," Circulation Journal, vol. 67 no. 10, pp. 846-850, DOI: 10.1253/circj.67.846, 2003.
[38] A. Arbab-Zadeh, A. N. DeMaria, W. F. Penny, R. J. Russo, B. J. Kimura, V. Bhargava, "Axial movement of the intravascular ultrasound probe during the cardiac cycle: implications for three-dimensional reconstruction and measurements of coronary dimensions," American Heart Journal, vol. 138 no. 5, pp. 865-872, DOI: 10.1016/S0002-8703(99)70011-6, 1999.
[39] H. Chen, M. N. Slipchenko, Y. Liu, X. Zhao, J. X. Cheng, Y. Lanir, G. S. Kassab, "Biaxial deformation of collagen and elastin fibers in coronary adventitia," Journal of Applied Physiology, vol. 115 no. 11, pp. 1683-1693, DOI: 10.1152/japplphysiol.00601.2013, 2013.
[40] A. Karimi, T. Sera, S. Kudo, M. Navidbakhsh, "Experimental verification of the healthy and atherosclerotic coronary arteries incompressibility via digital image correlation," Artery Research, vol. 16,DOI: 10.1016/j.artres.2016.08.002, 2016.
[41] K. L. Goh, D. F. Holmes, H. Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, T. J. Wess, "Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction," Journal of Biomechanical Engineering, vol. 130 no. 2, article 021011,DOI: 10.1115/1.2898732, 2008.
[42] K. L. Goh, Y. Chen, S. M. Chou, A. Listrat, D. Bechet, T. J. Wess, "Effects of frozen storage temperature on the elasticity of tendons from a small murine model," Animal, vol. 4 no. 09, pp. 1613-1617, DOI: 10.1017/S1751731110000698, 2010.
[43] R. E. Clark, "Stress strain characteristics of fresh and frozen human aortic and mitral leaflets and chordae tendineae: implications for clinical use," The Journal of Thoracic and Cardiovascular Surgery, vol. 66 no. 2, pp. 202-208, 1973.
[44] A. E. Peters, E. J. Comerford, S. Macaulay, K. T. Bates, R. Akhtar, "Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles," Journal of the Mechanical Behavior of Biomedical Materials, vol. 71, pp. 114-121, DOI: 10.1016/j.jmbbm.2017.03.006, 2017.
[45] M. Constable, H. E. Burton, B. M. Lawless, V. Gramigna, K. G. Buchan, D. M. Espino, "Effect of glutaraldehyde based cross-linking on the viscoelasticity of mitral valve basal chordae tendineae," Biomedical Engineering Online, vol. 17 no. 1,DOI: 10.1186/s12938-018-0524-2, 2018.
[46] E. G. Nabel, E. Braunwald, "A tale of coronary artery disease and myocardial infarction," New England Journal of Medicine, vol. 366 no. 1, pp. 54-63, DOI: 10.1056/NEJMra1112570, 2012.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 Hanna E. Burton and Daniel M. Espino. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/
Abstract
Background. Surface roughness can be used to identify disease within biological tissues. Quantifying surface roughness in the coronary arteries aids in developing treatments for coronary heart disease. This study investigates the effect of extreme physiological loading on surface roughness, for example, due to a rupture of an artery. Methods. The porcine left anterior descending (LAD) coronary arteries were dissected ex vivo. Mechanical overloading was applied to the arteries in the longitudinal direction to simulate extreme physiological loading. Surface roughness was calculated from three-dimensional reconstructed images. Surface roughness was measured before and after damage and after chemical processing to dehydrate tissue specimens. Results. Control specimens confirmed that dehydration alone results in an increase of surface roughness in the circumferential direction only. No variation was noted between the hydrated healthy and damaged specimens, in both the longitudinal (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer