This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Human cells are continuously exposed to exogenous oxidants as well as to those produced endogenously during normal physiological processes. Antioxidants form part of protective mechanisms that exist in human cells to scavenge and neutralize these oxidants. Oxidants such as the reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in several diseases [1, 2]. Antioxidant defenses are defective in these diseases and therefore it is possible to limit oxidative damage and ameliorate disease progression with antioxidant supplementation [3].
With reference to wounds, antioxidants play pivotal roles that consequently restore normalcy to injured skin. Basal levels of ROS and other free radicals are essential in almost all phases of the wound healing process (Figure 1) [4]. During haemostasis, ROS regulates the constriction of blood vessels to limit loss of blood. Furthermore, ROS facilitates the migration of neutrophils and monocytes from surrounding blood vessels towards the injury site. The presence of ROS and other free radicals in the wound vicinity during the inflammatory phase of the healing process is also required for infection control and general maintenance of sterility. Finally, ROS promotes the proliferation of keratinocytes, endothelial cells, and fibroblasts, thereby enhancing angiogenesis and collagen deposition. However, uncontrolled release of ROS could cause oxidative stress, resulting in cellular and tissue damage, thereby causing delayed healing [1].
[figure omitted; refer to PDF]To keep ROS within physiological levels, antioxidants serve as electron donors, thereby preventing them from capturing electrons from other molecules which ultimately leads to their destruction [4]. Both nonenzymatic antioxidants such as glutathione, ascorbic acid, and α-tocopherol, as well as enzymatic antioxidants like catalase and peroxiredoxin, have shown potential to normalize high ROS levels and thus stimulate healing [4]. By normalizing ROS, antioxidants can enhance their physiological roles and thereby accelerate the wound healing process. Naturally occurring antioxidants are generally favoured over their synthetic counterparts, as the latter are suspected to cause or promote negative health effects [5]. This has resulted in the restricted use of synthetic antioxidants in several countries [6].
This review provides a comprehensive list of African medicinal plants and isolated compounds with antioxidant activities, with the aim of highlighting the continent’s rich herbal resource base for possible management of wounds and allied conditions. Previous reviews have listed a number of these African medicinal plants with antioxidant properties [7–9]. The present work has therefore aimed to expand the list to include medicinal plant species with antioxidant properties that are used in different African countries including those from Madagascar and Mauritius. For the sake of inclusivity, plants that have been shown to contain compounds that hold the potential of being novel antioxidants are also considered. In addition, those with anti-inflammatory properties were also included due to an earlier observation that the anti-inflammatory activities of the same extracts could be explained, at least in part, by their antioxidant properties [10]. Additional efforts were also made to include information, where available, on their vernacular names, their regional distribution, and medicinal use and plant parts used for these preparations or for the isolation of the antioxidant ingredient(s). Table 1 lists medicinal plants that have been investigated and have confirmed antioxidant and/or anti-inflammatory activity and that contain compounds which are known to have such activities. Table 2 on the other hand lists medicinal plants that have confirmed antioxidant activity but the compounds responsible for their antioxidant property have not yet been identified.
Table 1
Medicinal plants with confirmed antioxidant activity, shown to contain compounds that are known to have such activity.
Family and plant name | Vernacular name | Plant part | Country/area | Medicinal use and/or experimental validation | Compounds isolated | Reference |
---|---|---|---|---|---|---|
Aloaceae | ||||||
| ||||||
Aloe barbadensis Mill. | Burn plant, | Leaf exudate | Algeria, Morocco, Tunisia | Antioxidant activity. | Flavonoids, two dihydrocoumarin derivatives and two flavone glycosides | [32–34] |
| ||||||
Aloe claviflora Burch. | Kraal aloe | Leaf exudate | South Africa | Radical scavenging activity and moderate activity in the lipid peroxidation assay | Chromone glycoside | [35, 36] |
| ||||||
A. saponaria (Ait.) Haw. | Mpelu | Leaf exudate | South Africa | Radical scavenging activity and moderate activity in the lipid peroxidation assay | Chromone glycoside | [35, 37] |
| ||||||
A. thraskii Baker | Dune aloe, ikhala, umhlaba | Leaf exudate | South Africa | Radical scavenging activity and moderate activity in the lipid peroxidation assay | Chromone glycoside | [35, 36] |
| ||||||
Amaranthaceae | ||||||
| ||||||
Amaranthus caudatus L. | Tassel flower | Seed; | Ethiopia | Antioxidant properties | Tocopherols, phenolic acids | [38–40] |
| ||||||
Anacardiaceae | ||||||
| ||||||
Anacardium occidentale L. | Not signalized | Stem-bark | Nigeria | Anti-inflammatory properties. | Agathisflavone, quercetin 3-O-rutinoside, quercetin 3-O-rhamnoside | [41, 42] |
| ||||||
Lannea edulis Engl. | Wild Grape | Root-bark | Zimbabwe | Semipolar extracts high activity both as radical scavengers and lipoxygenase inhibitors. Lipophilic extracts inhibitor of 15-lipoxygenase. | Two alkylphenols (cardonol 7 and cordonol 13) and three dihydroalkylhexenones | [43–45] |
| ||||||
Lannea velutina A. Rich | Bemmbeyi | Leaves, bark, root | Mali | Antioxidant properties | Proanthocyanidins | [46, 47] |
| ||||||
Mangifera indica L. | Mango | Leaves, seeds, | Benin | Anti-inflammatory, analgesic, and hypoglycemic effects. | Polyphenolics, flavonoids | [12, 13, 46, 47] |
| ||||||
Apiaceae | ||||||
| ||||||
Centella asiatica (L.) Urb. | Gotu kola | Leaves | South Africa | Antioxidant and anti-inflammatory activities. | Quercetin and tetrandrine | [48–55] |
| ||||||
Apocynaceae | ||||||
| ||||||
Alstonia boonei De Wild. | Awun, | Stem-bark | Nigeria | Anti-inflammatory activity. | Rutin, Quercetin robinobioside, | [56–59] |
| ||||||
Catharanthus roseus | Madagascar | Whole plant | Madagascar | Antioxidant activity and ability to increase antioxidant enzymes. | Phenols | [60] |
| ||||||
Arecaceae | ||||||
| ||||||
Elaeis guineensis Jacq. | Ori | Nuts | Ghana | Anti-inflammatory activity. | 3,4 hydroxybenzaldehyde, p-hydroxybenzoic acid, vanillic acid, syringic acid, ferulic acid, carotenoids, α-tocopherol | [12, 61] |
| ||||||
Asclepiadaceae | ||||||
| ||||||
Secamone afzelii Rhoem. | Ahaban | Stem | Central Africa | Antioxidant and anti-inflammatory properties. | Flavonoids, caffeic acid derivatives and α-tocopherol. | [62–64] |
| ||||||
Asphodelaceae | ||||||
| ||||||
Bulbine capitata Poelln. | Scented grass bulbine | Roots | South Africa | Anti-inflammatory and weak antioxidant and free radical scavenging and lipid peroxidation inhibition activities. | Anthraquinone Knipholone | [65–73] |
| ||||||
Bulbine frutescens Willd. | Snake flower, cat’s tail, | Leaf juice | South Africa | Anti-inflammatory and weak antioxidant and free radical scavenging and lipid peroxidation inhibition activities. | Phenylanthraquinones, | [65, 67, 70, 74, 75] |
| ||||||
Kniphofia foliosa Hochst. | Red-not-peker | Kenya | Anti-inflammatory and weak antioxidant and free radical scavenging and lipid peroxidation inhibition activities. Knipholone as a selective inhibitor of leukotriene metabolism. | Anthraquinone: Knipholone | [65, 76–78] | |
| ||||||
Asteraceae | ||||||
| ||||||
Artemisia abyssinica Sch.Bip. | Chikugn (Amharic) | Whole plant | Ethiopia | Radical scavenging and antioxidant activities. | Essential oils and flavonoids | [79–82] |
| ||||||
A. afra Jacq. | African wormwood | Roots, stems and leaves | Ethiopia | Radical scavenging and antioxidant activities. | Essential oils and flavonoids | [79, 82–84] |
| ||||||
A. arvensis L. | Mugwort | Whole plant | Algeria | Radical scavenging and antioxidant activities. | Phenolic compounds and flavonoids. | [85] |
| ||||||
A. campestris L. | Field sagewort | Whole plant | Algeria | Radical scavenging and antioxidant activities. | Phenolic compounds and flavonoids. | [85–87] |
| ||||||
Bidens pilosa L. | Black jack | Leaves | South Africa | Antioxidant and anti-inflammatory, antibacterial, antihypertensive activities. | Phenolic compounds: quercetin 3-O-rabinobioside, quercetin 3-O-rutinoside. | [19, 88–91] |
| ||||||
Cynara scolymus L. | Globe | Leaves | Ethiopia | Antioxidative and lipid-lowering properties and eNOS up-regulating ability. | Polyphenolic flavonoid compounds | [14, 15, 92, 93] |
| ||||||
Helichrysum dasyanthum Sweet | Afrikaans common name of kooigoed (bedding material) | Leaves | South Africa | Antioxidant, radical scavenging and anti-inflammatory activities. | Essential oils | [94–96] |
| ||||||
H. petiolare Hilliard & B.L. Burtt. | Everlasting, Imphepho | Leaves | South Africa | Antioxidant, radical scavenging and anti-inflammatory activities. | Essential oils | [94–96] |
| ||||||
Tagetes minuta L. | Khaki bush | Leaves | Madagascar | Antimicrobial and antioxidant activity. | Essential oils. | [23, 97] |
| ||||||
Balanophoraceae | ||||||
| ||||||
Thonningia sanguinea Vahl. | Nkomango | Roots | Ghana | Antioxidative and radical scavenging activities and lipid peroxidation inhibitory activity. | Ellagitannins: Thonningianin A and B | [98–103] |
| ||||||
Balanitaceae | ||||||
| ||||||
Balanites aegyptiaca (L.) Delile | | Bark and roots | East Africa | Antioxidant properties in vitro confirmed. | Coumarins, flavonoids, saponins (Balanin 1 (3β,12β,14β,16β) cholest-5-ene-3,16-diyl bis (β-d -glucopyranoside)- 12-sulphate, a new sterol sulfonated and Balanin 2 (3β,20S,22R,25R)-26-hydroxy-22-acetoxyfurost-5-en-3- yl-rhamnopyranosyl-(1→2)-glucopyranoside, a novel furostanol saponin) | [11, 104–106] |
| ||||||
Bignoniaceae | ||||||
| ||||||
Jacaranda mimosaefolia D.Don. | Sharpleaf Jacaranda | Leaves | Nigeria | Shown to have antimicrobial activity and used to treat infections | Phenylethanoid glucoside, jacaranone | [107–109] |
| ||||||
Spathodea campanulata P.Beauv. | African tulip | Stem-bark | Nigeria, Ghana, | Anti-inflammatory, antioxidant, hypoglycemic, anticomplement and anti-HIV activities. | Flavonoids and caffeic acid derivatives | [63, 110] |
| ||||||
Tecoma stans (L.) | Yellow | Leaves | Nigeria | Anti-diabetic activity is shown. | 4-O-E-caffeoyl-alpha-L-rhamnopyranosyl-(1′→ 3)-alpha/beta-D-glucopyranose, E/Z-acetoside, isoacetoside | [107, 111] |
| ||||||
Capparaceae | ||||||
| ||||||
Cleome arabica L. | Cleome efeina | Leaves | Egypt | Antioxidant activity, inhibited lipoxygenase activity and calcium ionophore-stimulated LTB4 synthesis in human neutrophils. | Rutin and quercetin. | [112, 113] |
| ||||||
Clusiaceae | ||||||
| ||||||
Garcinia kola Heckel | Bitter cola/aku ilu, agbu ilu. | Seeds | Nigeria | Inhibit lipid peroxidation and protective against H2O2-induced DNA strand breaks and oxidized bases. | Biflavonoid: kolaviron | [114–120] |
| ||||||
Harungana madagascariensis Poir. | Otori | Stem-bark | Eastern Nigeria | Significant antioxidant activity. | Prenylated Anthronoids: harunmadagascarin A [8,9-dihydroxy-4,4-bis-(3,3-dimethylallyl)-6-methyl-2,3-(2,2-dimethylpyrano)anthrone], harunganol B | [121–123] |
| ||||||
Hypericum carinatum Griseb. | Not signalized | Leaves | Egypt | Antioxidant and radical scavenging activities. | Benzophenones: cariphenone A (6-benzoyl-5,7-dihydroxy-2,2,8-trimethyl-2H-chromene) and cariphenone B (8-benzoyl-5,7-dihydroxy-2,2,6-trimethyl-2H-chromene). | [124, 125] |
| ||||||
H. perforatum L. | Common St.-Johns’ wort | Whole plant | Egypt | Anti-inflammatory and anti-oxidant activities. Free radical scavenging, metal-chelation, and reactive oxygen quenching activities. Protective against scopolamine-induced altered brain oxidative stress status and amnesia in rats. Ability to suppress the activities of 5-lipoxygenase (5-LO) and cyclooxygenase-2 (COX-2), key enzymes in the formation of proinflammatory eicosanoids from arachidonic acid (AA). | Flavonoids: Rutin, hyperoside, isoquercitrin, avicularin, quercitrin, and quercetin. | [124, 126–131] |
| ||||||
Cochlospermaceae | ||||||
| ||||||
Cochlospermum tinctorium A.Rich. | N’tiribara | Roots | Sudan, Uganda | Antioxidant activity. | Polyphenols: gallotannins and ferulic acids | [35] |
| ||||||
Combretaceae | ||||||
| ||||||
Combretum woodii Drum. | Large-leaved forest bushwillow | Leaf | South Africa | Antioxidant and antibacterial activities. Also tannins showed inhibitory effect on Fe2+-induced lipid peroxidation and radical scavenger activity. | Polyphenols: Combretastatin B5 (2′,3′4-trihydroxyl,3,5,4′-trimethoxybibenzyl). | [132–137] |
| ||||||
Combretum imberbe | Not signified | South Africa | Combretum species are widely used for treating abdominal disorders (e.g. abdominal pains, diarrhea) backache, bilharziasis, chest coughs, colds, conjunctivitis, dysmenorrhoea, earache, fattening babies, fever, headache | 1α,3β-dihydroxy-12-oleanen-29-oic, 1-hydroxy-12-olean-30-oic acid, 3,30-dihydroxyl-12-oleanen-22-one, and 1,3,24-trihydroxyl-12-olean-29-oic acid, a new pentacyclic triterpenoid (1α,23-dihydroxy-12-oleanen-29-oic acid-3β-O-2,4-di-acetyl-l-rhamnopyranoside) | [138] | |
| ||||||
Guiera senegalensis J.F.Gmel. | N’kundjè | Leaf | Western Africa | Antioxidant and radical scavenging activities. | Flavonol aglycones, flavonol glycosides and flavonoids (catechin, myricitrin, rutin and quercetin) as well as tannins (galloylquinic acids (hydrolysable tannins). | [139–143] |
| ||||||
Terminalia sericea Burch. ex DC. | Silver cluster-leaf | Bark | South Africa | Radical scavenging and antioxidant activities. | Pentacyclic triterpenoids | [21, 136, 144] |
| ||||||
Commelinaceae | ||||||
| ||||||
Commelina diffusa Burm.f. | Wandering Jew | Leaves | Ghanna | Anti-inflammatory and antioxidant properties. | Flavonoids | [63, 145] |
| ||||||
Palisota hirsuta K.Schum., | Not signified | Aqueous leaf extracts | Nigeria | Anti-inflammatory effects against carrageenan induced hind paw oedema | Not identified | [146, 147] |
| ||||||
Crassulaceae | ||||||
| ||||||
Bryophyllum | Ufu ivo | Leaves | Nigeria, South Africa | Anti-inflammatory properties. | Flavonoids, polyphenols, triterpenoids | [12, 148, 149] |
| ||||||
Cupressaceae | ||||||
| ||||||
Juniperus procera | African Juniper | Young twigs and buds | Ethiopia | Antioxidant and free radical scavenging activities. | Essental oils | [79, 150, 151] |
| ||||||
Dioscoreaceae | ||||||
| ||||||
Dioscorea dumetorum (Kunth) pax | Yam | Tubers | Nigeria | Antioxidant activity to modify serum lipid and anti-inflammatory activity. | Dioscorea and Dioscoretine | [152–154] |
| ||||||
Drosera madagascariensis | Sundew | Roots and flowers | Madagascar | Anti-inflammatory effects. | Flavonoids: hyperoside, quercetin and isoquercitrin | [155, 156] |
| ||||||
Drosera rotundifolia L. | Round-leaf Sundew | Roots and flowers | Madagascar | Anti-inflammatory effects. | Flavonoids: hyperoside, quercetin and isoquercitrin | [155, 157] |
| ||||||
Euphorbiaceae | ||||||
| ||||||
Alchornea laxiflora (Benth) Pax & K. Hoffm. | Wild banana | Leaf and root | Nigeria | Antioxidant and anti-microbial activity. | Quercetin-7,4′-disulphate, quercetin, quercetin-3′,4′-disulphate, quercetin-3,4′-diacetate, rutin and quercetrin | [158–161] |
| ||||||
Bridelia ferruginea Benth. | Ora | Leaves, stem | West Africa | Anti-inflammatory. | A bioflavonoid: Gallocatechin-(4′→O →7)-Epigallocatechin. | [12, 57, 162–166] |
| ||||||
Mallotus oppositifolius (Geiseler) Muell. Arg. | Jororo | Leaves, roots | West Africa | Antioxidant, anti-inflammatory and antimicrobial activities. | Flavonoids: quercetin and quercitrin. | [167–172] |
| ||||||
Fabaceae | ||||||
| ||||||
Aspalathus linearis (Brum. F.) R. Dahlgr. | Rooibos | Leaves | South Africa | Radical Scavenging Capacity | Phenolic Fractions, Tannins and monomeric flavonoids aspalathin, nothofagin, quercetin, rutin, isoquercitrin, orientin, isoorientin, luteolin, vitexin, isovitexin, and chrysoeriol. | [16–21, 173, 174] |
| ||||||
Burkea africana Hook | Wild Syringa | Bark | Mali and Sub-Saharan Africa | Antioxidant and radical scavenging activity. | Proanthocyanidins; fisetinidol-(4alpha- >8)-catechin 3-gallate and bis-fisetinidol-(4alpha- >6, 4alpha- >8)-catechin 3-gallate, with smaller amounts of flavan-3-ols (catechin, epicatechin and fisetinidol) | [175, 176] |
| ||||||
Crotalaria podocarpa DC. | Crotalaria | Roots | South Africa | Anti-inflammatory activity. | Flavonoids | [67, 177] |
| ||||||
Cyclopia intermedia | Honeybush | Leaves and stem | South Africa | Antioxidant activity. | Pinitol, shikimic acid, p-coumaric acid, 4-glucosyltyrosol, epigallocatechin gallate, the isoflavone orobol, the flavanones hesperedin, narirutin and eriocitrin, a glycosylated flavan, the flavones luteolin, 5-deoxyluteolin and scolymoside, the xanthone mangiferin and the flavonol C-6-glucosylkaempferol. | [19, 21, 178–181] |
| ||||||
Eriosema robustum | Twigs | Burundi, Ethiopia, Kenya, Rwanda, Tanzania, Uganda, Democratic Republic of Congo and Cameroon | Used traditionally for the treatment of coughs in East Africa and skin diseases in Central Africa | 2′,3′,5′,5,7-pentahydroxy-3,40-dimethoxyflavone, | [182, 183] | |
| ||||||
Erythrina latissima | Broad-leaved coral tree | Stem Wood | South Africa | Antimicrobial activity and weak radical scavenging properties. | Flavonoids and isoflavonoids. | [67, 184–186] |
| ||||||
E. lysistemon | Common coral tree; lucky bean tree | Bark | South Africa | Mild antioxidant activity. | Three prenylated flavonoid derivatives; 5,7,4′-trihydroxy-8-(3′′′-methylbut-2′′′-enyl)-6-(2′′-hydroxy-3′′-methylbut-3′′ enyl) isoflavone (isoerysenegalensein E), 5,7,2′-trihydroxy-4′-methoxy-5′-(3′′-methylbut-2′′-enyl) isoflavanone (lysisteisoflavanone), 5, 4′-dihydroxy-6-(3′′′-methylbut-2′′′-enyl)-2′′-hydroxyisopropyl dihydrofurano [4′′,5′′:8,7] isoflavone (isosenegalensin), together with the four known flavonoids abyssinone V-4′-methylether, alpinumisoflavone, wighteone and burttinone | [187–190] |
| ||||||
Melilotus elegans | Egug, Gugi, Yemen berri | Leaves | Ethiopia | Anti-inflammatory properties. | Flavonoids: kaempferol | [191–194] |
| ||||||
Millettia griffoniana | Not signalized | Root-bark and | Cameroon | Anti-inflammatory activity. | Coumarin: 4-hydroxy-3-(3′,4′-methylenedioxyphenyl)-5,6,7-trimethoxycoumarin, durmillone, odorantin, 7-methoxyebenosin, calopogonium isoflavone B and 7,2′-dimethoxy-4′,5′-methylenedioxy isoflavone maximaisoflavone G (5) and 7-hydroxy-6-methoxy-3′,4′-methylenedioxyisoflavone and new prenylated isoflavonoids griffonianones A, B, C, D and E.Griffonianone D ((7E)-(6′′,7′′-dihydroxy-3′′,7′′-dimethyloct-2′′-enyl)oxy-4′-methoxyisoflavone), an isoflavone. | [195–202] |
| ||||||
Parkia biglobosa | African Locust Bean | Bark | Mali | Anti-inflammatory activity. | Tocopherol, ascorbic acid (Seeds) | [12, 33, 34, 36–39, 43–53, 55, 64, 66–72, 118, 119, 121, 138, 159, 182, 195, 203–235] |
| ||||||
Peltophorum africanum Sond. | Weeping wttle | Root and bark | South Africa | Antioxidant and antibacterial activities | Flavonol glycosides and flavonol glucoside gallates | [236–238] |
| ||||||
Piliostigma thonningii | Camel’s foot tree, Monkey Bread | Root, bark, pods, leaves | Nigeria, Ethiopia Botswana, Kenya, Namibia, Senegal, South Africa, Sudan, Tanzania, Uganda, Zambia | Anti-oxidant and anti-inflammatory properties. | Proanthocyanidins epicatechin, catechin trimers and oligomers, flavonoids, polyphenolics, | [12, 58, 239–245] |
| ||||||
Sutherlandia frutescens R.Br. | Cancerbush | Leaves | South Africa | Superoxide and hydrogen peroxide scavenging activities. | Canavanine, pinitol | [246–248] |
| ||||||
Trigonella foenumgraecum L. | Fenugreek | Seeds | Ethiopia, Morocco | Protective effect against Oxidative stress during ischemia-reperfusion. | Free phenolics and Vit C. | [26–28, 249, 250] |
| ||||||
Humiriaceae | ||||||
| ||||||
Sacoglottis gabonensis Urb. | Cherry tree, ozouga | Stem-bark | West Africa | Antioxidant activity. | Bergenin | [251–254] |
| ||||||
Hypoxidaceae | ||||||
| ||||||
Hypoxis hemerocallidea Fisch. & C.A. Mey. | African potato | Corms | South Africa | Antioxidant activity. | Rooperol | [188, 255–257] |
| ||||||
Lamiaceae | ||||||
| ||||||
Ocimum basilicum L. | Mükandu | Leaves | Burkina Faso | Intermediate antioxidant activity and high antibacterial activity. | Linalool basil oil | [23, 258] |
| ||||||
Ocimum gratissimum L. | Tea bush, Scent leaf/Nchuanwu. | Leaves | Popular republic of Congo (ex Brazaville Congo) | Antioxidant activity | Xanthomicrol, cirsimaritin, rutin, kaempferol 3-O-rutinoside and vicenin-2 were identified as the major flavonoids, whereas luteolin 5-O-glucoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside, vitexin, isovitexin, quercetin 3-O-glucoside and isothymusin were detected as minor constituents. | [12, 58, 258–262] |
| ||||||
Lauraceae | ||||||
| ||||||
Cinnamomum zeylanicum Breyne | Cinnamon leaf | Leaves | Madagascar | Very high antioxidant and high antimicrobial activities. | Cinnamaldehyde, eugenol and eugenyl acetate to be the main constituents of cinnamon oil. | [22–24, 263] |
| ||||||
Ocotea bullata (Burch.) Baill. | Black stinkwood | Bark | South Africa | Anti-inflammatory, cyclooxygenase inhibitory activity. | Monoterpenoids | [188, 264] |
| ||||||
Ravensara aromatica Sonn. | Nutmeg | Bark | Madagascar | Low antioxidant and antimicrobial activity. | Essential oils, principally composed of the monoterpene hydrocarbons a-pinene, sabinene, myrcene, limonene, & the azulene: iso-ledene. In barks, estragole (methyl chavicol) but leaves contain b-myrcene, 1,8-cineole, linalool, and carotol. | [23, 25, 265] |
| ||||||
Malvaceae | ||||||
| ||||||
Hibiscus sabdariffa L. | Red tea, | Flowers | Nigeria | Antimutagenic activity and free radical scavenging effects on active oxygen species | Flavonol glucoside hibiscitrin | [19, 21, 266–269] |
| ||||||
Meliaceae | ||||||
| ||||||
Trichilia roka | Soulafinzan | Root | Tropical Africa Mali | Significantly protective against CCl4-induced liver damage and prevented perisinusoidal fibrosis. | Polyphenols | [270, 271] |
| ||||||
Menispermaceae | ||||||
| ||||||
Sphenocentrum jollyanum Pierre | Akerejupon | Fruit | West Africa | Anti-inflammatory activity. | Furanoditerpenes: columbin, isocolumbin. | [272–274] |
| ||||||
Tinospora bakis | Whole plant | Sudan | Anti-inflammatory activity. To treat headache and rheumatism | A diterpenoid furanolactone, columbin | [275] | |
| ||||||
Moraceae | ||||||
| ||||||
Dorstenia barteri | Contrayerva | Twigs/leaves | Cameroon | Antioxidant properties account for the anti-inflammatory action of these extracts | Prenylated flavonoids: Three diprenylated chalcones: bartericins A (-)-3-(3,3-dimethylallyl)-5′-(2-hydroxy-3-methylbut-3-enyl)-4,2′,4′-trihydroxychalcone, bartericins B (+)-3-(3,3-dimethylallyl)-4′,5′-[2′′′-(1-hydroxy-1-methylethyl)-dihydrofurano]-4,2′-dihydroxychalcone and bartericins C 3,4-(6′′,6′′-dimethyldihydropyrano)-4′,5′-[2′′′,-(1-hydroxy-1-methylethyl)-dihydrofurano]-2′-hydroxychalcone and also two novel diprenylated chalcones: 3,5′-di-(2-hydroxy-3-methylbut-3-enyl)-4,2′,4′-trihydroxychalcone, 3, 4-(2,2-dimethylpyrano)-3′-(2-hydroxy-3-methylbut-3-enyl)-2′,4′-dihydroxychalcone, 4,2′, 4′-trihydoxy-3′-prenylchalcone and 4,2′,4′-trihydoxy-3, 3′-diprenylchalcone; and 5,7,4′-trihydoxy-8-prenylflavone. | [67, 276–281] |
| ||||||
D. ciliata Engl. | Contrayerva | Aerial parts | Cameroon | Antiradical and antioxidant activities. | phenolic compound (6-prenylapigenin) | [282–284] |
| ||||||
D. convexa De Wild. | Contrayerva | Twigs and | Democratic Republic of the Congo | Antioxidant properties account for the anti-inflammatory action of these extracts. | Prenylated flavonoids | [67, 276, 280] |
| ||||||
D. mannii Hook.f. | Contrayerva | Twigs/leaves | Central Africa | Antioxidant action against copper-induced LDL oxidation, this activity is like the non-prenylated flavonoid quercetin. Also, inhibition of platelet aggregation and influence of cyclooxygenase and lipoxygenase activity. | Grenylated and prenylated flavonoids and flavonones: | [67, 187, 207, 285–287] |
| ||||||
D. poinsettifolia var. angusta Engl. | Dingetenga | Whole plant | Cameroon | Antiradical and antioxidant activities. | Grenylated and prenylated flavonoids. The unusual 4-phenyl-substituted dihydrocoumarin and the rare geranyl-and prenyl-substituted Chalcone. | [207, 288, 289] |
| ||||||
D. psilurus Welw. | Dingetenga | Roots | Cameroon Central Africa | Antiradical and antioxidant activities. | Grenylated and prenylated flavonoids. | [206, 282, 290–292] |
| ||||||
Myrtaceae | ||||||
| ||||||
Eugenia elliptica Sm. | Lilly Pilly | Leaves | Mauritius | Modulate the expression of the antioxidant enzyme genes. | Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech | [293, 294] |
| ||||||
E. fasciculata Wall. | Not signalized | Leaves | Mauritius | Modulate the expression of the antioxidant enzyme genes. | Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech. | [293] |
| ||||||
E. orbiculata Lam. | Not signalized | Leaves | Mauritius | Modulate the expression of the antioxidant enzyme genes. | Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech. | [293, 295] |
| ||||||
E. pollicina | Not signalized | Leaves | Mauritius | Modulate the expression of the antioxidant enzyme genes. | Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech. | [293, 296] |
| ||||||
Monimiastrum acutisepalum | Not signalized | Leaves | Mauritius | Modulate the expression of the antioxidant enzyme genes. | Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), and quercetin-3-O-glucoside (isoquercitrin). | [293–295] |
| ||||||
M. globosum | Not signalized | Leaves | Mauritius | Modulate the expression of the antioxidant enzyme genes. | Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), and quercetin-3-O-glucoside (isoquercitrin). | [293] |
| ||||||
Syzygium aromaticum (L.) | Clove bud | Dried flowers | Madagascar | Antioxidant and antimicrobial activities. | Eugenol | [23, 297, 298] |
| ||||||
S. coriaceum | Bois de pomme | Mauritius | Abilities to modulate the expression of the antioxidant enzyme genes. | Phenols and flavonoids: Quercetin-3-O-rutinoside, kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, procyanidin B1 dimer, (-)-epicatechin gallate | [293] | |
| ||||||
S. glomeratum DC. | Bois de pomme | Leaves | Mauritius | Abilities to modulate the expression of the antioxidant enzyme genes. | Phenols and flavonoids: kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), procyanidin B1 dimer, (-)-epicatechin gallate, chlorogenic acid, (-)-epicatechin | [293] |
| ||||||
S. guehoii | Not signalized | Mauritius | Abilities to modulate the expression of the antioxidant enzyme genes. | Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, chlorogenic acid, procyanidin B2 dimer | [293] | |
| ||||||
S. mauritianum | Not signalized | Leaves | Mauritius | Abilities to modulate the expression of the antioxidant enzyme genes. | Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, chlorogenic acid | [293] |
| ||||||
S. petrinense | Not signalized | Mauritius | Abilities to modulate the expression of the antioxidant enzyme genes. | Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), procyanidin B1 dimer, chlorogenic acid | [293] | |
| ||||||
S. venosum (Lam.) | Not signalized | Mauritius | Abilities to modulate the expression of the antioxidant enzyme genes. | Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, procyanidin B2 dimer | [293, 295, 299] | |
| ||||||
Oleaceae | ||||||
| ||||||
Olea europaea | African wild olive | Leaves | South Africa | Potent antioxidant activity. | Oleuafricein (mixture of oleanolic acid and ursolic acids), Triterpenoids and oleoropein. | [84, 300, 301] |
| ||||||
Pedaliaceae | ||||||
| ||||||
Harpagophytum procumbens DC. | Devil’s claw | Root | South Africa | Anti-inflammatory and ability to inhibit the expression of cyclooxygenase-2 and inducible nitric oxide by suppression of NF-kappaB activation. | Roots contain iridoid glycosides mainly harpagoside. | [302–312] |
| ||||||
Piperaceae | ||||||
| ||||||
Piper guineense | West African black pepper | Fruit, seed and leaf | Ghana, West Africa | Antioxidant activity. | Volatile oil components-monoterpenes, sesquiterpenes, terpenoids, lignans and sterols. | [313–316] |
| ||||||
Podocarpaceae | ||||||
| ||||||
Podocarpus species | Leaves and young stems | Eastern and Southern Africa | These species are used to treat fevers, asthma, coughs, cholera, chest complaints, arthritis, rheumatism, painful joints and venereal diseases | Diterpenoids, bioflavonoids and Totarol | [317] | |
| ||||||
Ranunculaceae | ||||||
| ||||||
Nigella sativa L. | Black cumin | Seed | African countries in the Mediterranean region | Antioxidant potentials through scavenging ability of different free radicals including the superoxide anion radical, inhibition of lipid peroxidation, and protection of liver against carbon tetrachloride (CCl4)-induced liver fibrosis in rabbits | Oil: Thymoquinone | [29–31, 318, 319] |
| ||||||
Rosaceae | ||||||
| ||||||
Crataegus monogyna Jacq. | Hawthorn, May Blossom, May Day Flower, White Thorn. | Fresh vegetative and reproductive organs | Mauritius, Northern Africa | Antioxidant activities. | Polyphenols: (proanthocyanidin, flavonoid, anthocyanin, (-)-epicatechin, procyanidin B2, chlorogenic acid). | [320–323] |
| ||||||
Leucosidea sericea | Leaf, bark and roots | Southern Africa | Antimicrobial and anti-inflammatory properties | Phenolics, alkaloids and saponins | [210] | |
| ||||||
Pygeum africanum Hook. f. | African plum tree | Bark | South Africa | Anti-inflammatory. | 14% triterpenes (urolic acids, oleanolic acid, crataegolic acid), 0.5% n-docosanol | [188, 324–327] |
| ||||||
Rubiaceae | ||||||
| ||||||
Crossopteryx febrifuga Benth. | Roger Blench | Seeds | Mali | Radical scavenging and lipoxygenase inhibition activities. | Flavonoids | [328–330] |
| ||||||
Rutaceae | ||||||
| ||||||
Agathosma betulina (Berg.) Pillans. | Round-leaf buchu | Leaves, | South Africa | Hydroxyl radical ion scavenging ability. | Essential oils and flavonoids | [188, 331, 332] |
| ||||||
A. crenulata (L.) | Oval-leaf | Leaves, | South Africa | Anti-inflammatory activity. | Essential oils and flavonoids | [84, 188, 331, 332] |
| ||||||
Fagara zanthoxyloides Lam. | xeti, xe | Roots, root-bark | Cameroon, Uganda | Antioxidant activity. | Phenylethanoid derivative, lignans and fagaronine | [333–336] |
| ||||||
Sapindaceae | ||||||
| ||||||
Dodonaea viscosa | Umusasa | Leaves | Rwanda | Anti-inflammatory activity by inhibiting the synthesis of prostaglandin (PG) E(2). | Quercetin, isorhamnetin | [337–341] |
| ||||||
Xanthorrhoeaceae | ||||||
| ||||||
Aloe ferox Mill. | Bitter aloe or Cape aloe | Leaves | South Africa, Lesotho | A. ferox gel contains at least 130 medicinal agents with anti-inflammatory, analgesic, calming, antiseptic, antiviral, antiparasitic and anticancer effects | Chromones, anthraquinones, anthrone, anthrone-C-glycosides, and other phenolic compounds | [9] |
| ||||||
Zingiberaceae | ||||||
| ||||||
Siphonochilus aethiopicus (Schweinf.) B.L. Burtt. | Wild ginger | Rhizome | South Africa | Anti-inflammatory activity through cyclooxygenase inhibitory (prostaglandin-synthetase inhibition), activity. | Sesquiterpenoid | [188, 264, 342] |
Table 2
Medicinal plants with confirmed antioxidant activity or medicinal plants that contain compounds that are not known to have antioxidant activity.
Family and plant name | Vernacular name | Plant part | Country/area | Medicinal use and/or experimental validation | Compounds isolated | Reference |
---|---|---|---|---|---|---|
Acanthaceae | ||||||
| ||||||
Barleria species | Leaves, twigs and roots | South Africa | Anti-inflammatory and antioxidant activities | Not identified | [212, 213] | |
| ||||||
Hypoestes rosea Decne. | Not signalized | Leaf extract | Nigeria | Anti-inflammatory activity due in part to its ability to inhibit NF-kappaB activation through direct inhibition of IkappaB kinase (IKK). | Diterpene: Hypoestoxide (a bicyclo [9,3,1] pentadecane) | [380, 381] |
| ||||||
Aizoaceae | ||||||
| ||||||
Glinus lotoides L. | “Mettere” | Seeds | Cameroon | Used to treat cardiovascular and gastrointestinal system. | Three flavonoids: apigenin-7-O-glucoside, isovitexin, and luteolin-7-O-glucoside | [290, 382–386] |
| ||||||
G. oppositifolius (L.) Aug. DC. | Balasa | Whole plant | Mali | Antioxidant and radical scavenging abilities. | kaempferol 3-O-galactopyranoside | [387, 388] |
| ||||||
Aloaceae | ||||||
| ||||||
Aloe claviflora Burch. | Kraal aloe | South Africa | Free radical scavenging and moderate inhibition in lipid peroxidation. | Not identified | [35] | |
| ||||||
A. maculata | “Yellow Form” | South Africa | Free radical scavenging and moderate inhibition in lipid peroxidation. | Not identified | [35] | |
| ||||||
A. thraskii Baker | Dune aloe | South Africa | Free radical scavenging and moderate inhibition in lipid peroxidation. | Not identified | [35] | |
| ||||||
Anacardiaceae | ||||||
| ||||||
Sclerocarya birrea (A.Rich.) Hochst | Marula | Stem-bark | Anti-inflammatory activity. | Not identified | [389] | |
| ||||||
Annonaceae | ||||||
| ||||||
Enantia chlorantha Oliver | Erenbavbogo, Mföl Muamba | Root, stem-bark | Nigeria | Anti-inflammatory activity. | Not identified | [390–393] |
| ||||||
Uvaria afzelii Sc. Elliot | Pareho-houon, Bahie oulin | Leaves, roots and stem-bark | Ivory Coast | Used as for its antiparasitic activity | Anthocyanins and other flavonoids | [394–396] |
| ||||||
U. chamae P.Beauv. | Okandii | Stem, bark | Ivory Coast Nigeria | Used for its antiplasmodial activity. | Polyphenols | [12, 397, 398] |
| ||||||
Apocynaceae | ||||||
| ||||||
Picralima nitida Th. & H. Dur. | Ghana: Kpetepetetso, Kanwini, | Seeds Stem-bark | Ghana | Anti-inflammatory activity. | Not identified | [168, 399–402] |
| ||||||
Rauvolfia vomitoria Afzel. | Asofeyeje, adapopo | Root-bark | Ghana | Anti-inflammatory activity. | Not identified | [56] |
| ||||||
Araliaceae | ||||||
| ||||||
Cussonia barteri Seem. | Cabbage tree | Leaves | Nigeria, Mali | Antioxidant and radical scavenging abilities. Inhibitory activity on 5-lipoxygenase and cyclooxygenase-1. | Not identified | [357, 403] |
| ||||||
Arecaceae | ||||||
| ||||||
Hyphaene thebaica Mart. | Not signalized | Shell | Niger | Antioxidant activity | Not identified | [11] |
| ||||||
Asclepiadaceae | ||||||
| ||||||
Calotropis procera (Aiton) | African milk weed | Latex | Ethiopia | Anti-inflammatory and antioxidant activities. | Not identified | [404] |
Swallow-wort/Auricula tree. | Sudan | Used to control dermal fungal infections and for pain relief. Latex used against scorpion stings and roots for jaundice. | ||||
| ||||||
Gongronema latifolium Benth. | Not signalized | Leaves | Nigeria | Antioxidant activity | Not identified | [405–407] |
| ||||||
Leptadenia hastata Decne. | Not signalized | Leaves | Niger | Antioxidant activity | Not identified | [11] |
| ||||||
Pachycarpus rigidus E. Mey. | Not signalized | Bark | South Africa | Antioxidant activity. | Not identified | [188] |
| ||||||
Asparagaceae | ||||||
| ||||||
Asparagus virgatus Baker | Broom asparagus | Bark | South Africa | Antioxidant activity. | Not identified | [35] |
| ||||||
Asteraceae | ||||||
| ||||||
Ageratum conyzoides L. | Inkuruba | Whole plant | Central Africa, Rwanda Ethiopia | Antioxidant and anti-inflammatory properties. | Not identified | [12, 408, 409] |
| ||||||
Artemisia herba-alba | Desert wormwood, shih | Aerial parts | Algeria, Tunisia, Israel, Morocco | Herbal tea from A. herba-alba has been used as analgesic, antibacterial, antispasmodic, and hemostatic agents in folk medicines | Camphor (17–33%), α-thujone (7–28%), and chrysanthenone (4–19%) | [9] |
| ||||||
Artemisia judaica L. | Wormwood | Leaves | Egypt | Used for gastrointestinal disorders | Flavonoids with antioxidant activities. | [410] |
| ||||||
Callilepis laureola | Ox-eye daisy, Impila | Tuber | South Africa | Antioxidant and radical scavenging activities. | Not identified | [188, 411, 412] |
| ||||||
Psiadia punctulata (DC) Vatke | Mwendathigo | Leaf exudate | Kenya, East Africa | Used to treat colds, fevers and abdominals pains. | Flavones: 5,7-dihydroxy-2′,3′,4′,5′-tetramethoxyflavone, 5,4′-dihydroxy-7,2′,3′,5′-tetramethoxyflavone, 5,7,4′-trihydroxy-2′,3′,5′-trimethoxyflavone, 5-hydroxy-7,2′,3′,4′,5′-pentamethoxyflavone and 5,7,3′-trihydroxy-2′,4′,5′-trimethoxyflavone. | [359, 413] |
| ||||||
Vernonia kotschyana Sch. Bip. ex Walp. | Buaye | Leaves, roots | Mali | Anti-inflammatory activity. | Not identified | [187, 414] |
| ||||||
Bignoniaceae | ||||||
| ||||||
Kigelia pinnata DC. | Suasage tree, | Root | Egypt | Used as dressing for ulcers and used to treat rheumatism | Naphthoquinones: kigelinone, isopinnatal, dehydro-alpha-lapachone, and lapachol and the phenylpropanoids: p-coumaric acid, ferulic acid (root), kigelinone and caffeic acid (fruits). | [415, 416] |
| ||||||
Tabebuia rosea (Bertol.) DC. | Pink tecoma | Leaves | Nigeria | Used to treat arthritis. | Tannins, flavonoids, alkaloids, quinones and traces of saponins | [107] |
| ||||||
Crescentia cujete L. | Calabash | Leaves | Nigeria | Used as purgative and to treat coughs. | Tannins, flavonoids, alkaloids, quinones and traces of saponins | [107] |
| ||||||
Bombacaceae | ||||||
| ||||||
Bombax costatum Pellegrin & Vuillet | Not signalized | Fruit | Niger | Antioxidant activity | Not identified | [11] |
| ||||||
Boraginaceae | ||||||
| ||||||
Heliotropium | Nonsikou | Leaves | Mali | Moderate antioxidant activity. | Not identified | [417–419] |
| ||||||
Buddlejaceae | ||||||
| ||||||
Buddleja | Butterfly-bush | Leaves | Egypt | Used to treat coughs, asthma, and bronchitis. | Flavonoids triglycosides: hesperetin and diosmetin 7-O (2′′,6′′- di-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosides | [420] |
| ||||||
Caesalpiniaceae | ||||||
| ||||||
Cassia fistula L. | Golden shower tree | Fruit | Mauritius | Laxative. | Phenolics and flavonoids | [368] |
| ||||||
Canellaceae | ||||||
| ||||||
Warburgia salutaris (Bertol F.) Chiov. | Pepper-bark tree | Bark | South Africa | Antioxidant and radical scavenging activities. | Not identified | [188] |
| ||||||
W. ugandensis Sprague | Fever tree | Stem-bark | Kenya | Used to treat stomach ache, chest pains, malaria, toothache and coughs. | Flavonol glycoside Kaempferol, kaempferol 3-rhamnoside, kaempferol | [421–424] |
| ||||||
Capparaceae | ||||||
| ||||||
Boscia senegalensis (Pers.) Lam. ex Poiret | Senegal Boscia | Fruit hull | Mali | Antioxidant activity. | Not identified | [12] |
| ||||||
Gynandropsis gynandra Merr. | Not signalized | Leaves | Niger | Antioxidant activity | Not identified | [11] |
| ||||||
Celastraceae | ||||||
| ||||||
Salacia leptoclada Tul. | Lemon rope | Root | South Africa | Antioxidant activity. | Not identified | [188] |
| ||||||
Chenopodiaceae | ||||||
| ||||||
Salsola somalensis N.E.Br. | Dingetegna | Roots | Ethiopia | Used as taenicide. | Nine new isoflavones, 5,3′-dihydroxy-6,7,2′-trimethoxy isoflavone, 5,8,3′-trihydroxy-7,2′-dimethoxyisoflavone, 8,3′-dihydroxy-5,7,2′-trimethoxyisoflavone, 5,6,3′-trihydroxy-7,2′-dimethoxyisoflavone, 6,7,3′ -trihydroxy-5,2′-dimethoxyisoflavone, 5,8,3′-trihydroxy -2′-methoxy-6,7-methylenedioxyisoflavone, or 5,6,3′-trihydroxy-2′-methoxy-7,8-methylenedioxyisoflavone, 3′-hydroxy-5,6,7,2′-tetramethoxyisoflavone, 7,3′-dihydroxy -5,6,2′-trimethoxyisoflavone and 6,3′-dihydroxy-5,7,2′-trimethoxyisoflavone. | [425] |
| ||||||
Clusiaceae | ||||||
| ||||||
Psorospermum guineense Hochr. | Karidjakouma | Leaves | Mali | Antioxidant activity. | Not identified | |
| ||||||
Combretaceae | ||||||
| ||||||
Pteleopsis suberosa Engl. & Diels. | Girga | Stem-bark | Mali | Antioxidant properties. | Not identified | [329, 426] |
| ||||||
Dioscoreaceae | ||||||
| ||||||
Dioscorea dumetorum Th.Dur.et Schinz | Cluster yam | Tubers | Nigeria | Antioxidant and hypolipidemic activities. | Not identified | [152, 153, 427] |
| ||||||
Ebenaceae | ||||||
| ||||||
Diospyros abyssinica (Hiern) F. White | Giant diospyros | Leaves, roots | Mali | Radical scavengers and lipoxygenase inhibitors. | Not identified | [357] |
| ||||||
Euclea divinorum Hiern | Diamond-leaved euclea | Roots | Ethiopia | Used to treat venereal diseases, chest pains, pneumonia, internal body pains, stomach-ache and diarrhea. Chewed roots ease toothache. | Flavonoids | [428] |
| ||||||
Euphorbiaceae | ||||||
| ||||||
Acalypha hispida Burm. f. | Chenille plant | Leaves | Nigeria | Used as anti-bacterial agent. | Gallic acid and Quercetin 3-O-rutinoside and kaempferol 3-O-rutinoside | [228, 429] |
| ||||||
A. wilkesiana | Copper leaf | Leaves | Nigeria | Used to treat ailments of microbial origin | Gallic acid and Quercetin 3-O-rutinoside and kaempferol 3-O-rutinoside | [430] |
| ||||||
Croton gratissimus Burch. | Lavender fever-berry | Bark | South Africa | Used as purgative for abdominal disorders, fever. The charred and powdered bark is used to treat bleeding gums | Flavonoids. | [188] |
| ||||||
Euphorbia hirta L. | Kasandasanda | Whole plant | Ethiopia | Used to treat diarrhoea and asthma. | Flavonoid: quercitrin | [12, 431–433] |
| ||||||
Fabaceae | ||||||
| ||||||
Acacia caffra (Thunb.) Wild. | Hook-thorn | Bark | South Africa | Used to treat diarrhoea and as emetics. | Proanthocyanidins: oritin-(4alpha→5)-epioritin-4beta-ol, ent-epioritin-(4alpha→5)-epioritin-4beta-ol and epioritin-(4beta→5)-epioritin-4alpha-ol and ent-oritin-(4beta→5)-epioritin-4alpha-ol. | [434–436] |
| ||||||
A. galpinii Burtt Davy. | Monkey-thorn | Bark | South Africa | Used to treat diarrhoea. | Proanthocyanidins: oritin-(4alpha→5)-epioritin-4beta-ol, ent-epioritin-(4alpha→5)-epioritin-4beta-ol and epioritin-(4beta→5)-epioritin-4alpha-ol and ent-oritin-(4beta→5)-epioritin-4alpha-ol. | [434, 435] |
| ||||||
Afzelia bella | Pretty Afzelia | Stem-bark | Ivory Coast | Used to treat skin diseases and cough. | An acylated dihydroflavonol glycoside identified as 2R,3R-trans-aromadendrin-7-O-beta-D-glucopyranoside-6′′-(4′′-hydroxy-2′′-m ethylene flavonoids:butanoate), along with five known flavonoids and the lignan glycoside (+)-isolariciresinol 9-O-xyloside. | [437] |
| ||||||
Bolusanthus speciosus | Tree Wisteria | Root | South Africa, Botswana, Mozambique, Zimbabwe, Zambia. | Used to treat abdominal pains, emetism and tuberculosis. | Three new flavonoids from the root: 5,7,4′-trihydroxy-6-[1-hydroxy-2-methylbuten-2-yl]isoflavone (isogancaonin C), 7,2′-dihydroxy-4′-methoxyisoflav-3-ene (bolusanthin III), 6,6′-dihydroxy-4′-methoxy-2-arylbenzofuran (bolusanthin IV) in addition to eight known derrone, medicarpan, genistein, wighteone, lupiwighteone, gancaonin C, 7-hydroxy-4′-methoxyisoflavone and 7,3′-dihydroxy-4′-methoxyisoflavone flavonoids | [67, 358, 438] |
| ||||||
Crotalaria lanceolata E. Mey. | Lanceleaf rattlebox | Root | South Africa | Antioxidant activity. | Not identified | [188] |
| ||||||
Derris trifoliata Lour. | Common derris | Root-bark. | Kenya | Used for prevention of cancer. | An isoflavonoid derivative, named 7a-O-methyldeguelol, a modified rotenoid with an open ring-C, representing a new sub-class of isoflavonoids (the sub-class is here named as rotenoloid). In addition, the known rotenoids, rotenone, deguelin and alpha-toxicarol. In addition, two unusual rotenoid derivatives, a rotenoloid (named 7a-O-methyl-12a-hydroxydeguelol) and a spirohomooxarotenoid (named spiro-13-homo-13-oxaelliptone). | [438–441] |
| ||||||
Entada africana Guill. & Perr. | Samanere | Leaves | Mali | Antioxidant properties. | Not identified | [329, 357, 442, 443] |
| ||||||
Erythrina abyssinica Lam. | Red hot poker tree | Stem bark | Kenya | Used to treat malaria. | New isoflav-3-ene [7,4′-dihydroxy-2′,5′-dimethoxyisoflav-3-ene] in addition to the known compounds erycristagallin, licoagrochalcone A, octacosyl ferulate and triacontyl 4-hydroxycinnamate were identified. A new chalcone, 2′,3,4,4′-tetrahydroxy-5-prenylchalcone (trivial name 5-prenylbutein) and a new flavanone, 4′,7-dihydroxy-3′-methoxy-5′-prenylflavanone (trivial name, 5-deoxyabyssinin II) along with known flavonoids | [444, 445] |
| ||||||
E. burttii Baker f. | Not signalized | Stem-bark | Kenya | Used as antifungal and antibacterial agent. | Two new flavanones: 5,7- | [446–449] |
| ||||||
E. eriotricha Harms. | Not signalized | Root-bark | Cameroon | Anti-microbial activity | A novel isoflavanone, named eriotrichin B, one new prenylated flavanone, named sigmoidin L, one flavanone (sigmoidin A), four isoflavones (scandenone, 6,8-diprenylgenistein), flemiphilippinin B and 8-prenyldaidzein | [450, 451] |
| ||||||
E. sacleuxii Hua | Kinyarwanda | Bark | Kenya | Used to treat fever, malaria and leprosy. | Two new isoflavanones, (R)-5,7-dihydroxy-2′,4′,5′-trimethoxyisoflavanone (trivial name, (R)-2,3-dihydro-7-demethylrobustigenin) and (R)-5-hydroxy-2′,4′,5′-trimethoxy-2′′,2′′-dimethylpyrano[5′′,6′′:6,7]isoflavan one (trivial name, (R)-saclenone) | [452, 453] |
| ||||||
Millettia ferruginea | Birbira | Bark | Ethiopia | Used for skin disorders. | O-Geranylated and O-prenylated flavonoids, C-prenylated isoflavones | [199] |
| ||||||
M. dura Dunn. | Runyankore Uumuyogoro | Stem-bark | Rwanda | Used for blood parasitism | Flavonoids: A new isoflavone (7,3′-dimethoxy-4′,5′-methylenedioxyisoflavone) and three known isoflavones [isoerythrinin A 4′-(3-methylbut-2-enyl) ether, isojamaicin and nordurlettone]. | [454, 455] |
| ||||||
Ostryoderris stuhlmannii (Taub.) Dunn ex Harms | Mnyinga | Leaves | Mali | Antioxidant activity. | Not identified | [357] |
| ||||||
Piliostigma reticulatum (DC.) Hochst | Kalga | Leaves | Nigeria | High antioxidant activity. | Not identified | [240] |
| ||||||
Sesbania pachycarpa DC. | Not signalized | Leaves | Niger | Antioxidant activity | Not identified | [11] |
| ||||||
Tephrosia polyphylla (Chiov.) J.B. Gillett | Hoary pea | Aerial part | Kenya | Flavonoids | [456] | |
| ||||||
T. deflexa Baker | Hoary pea | Aerial part | Senegal | Flavonoids: Rutin 1 – quercetine 3-O-a-L-rhamnopyrannosyl (1-6) glucopyrannose – and morin 2 – 3,5,7,2′,4′-pentahydroxyflavone. | [457] | |
| ||||||
T. albifoliolis | Hoary pea | Aerial part | Senegal | Flavonoids: Rutin 1 – quercetine 3-O-a-L-rhamnopyrannosyl (1-6) glucopyrannose – and morin 2 – 3,5,7,2′,4′-pentahydroxyflavone. | [457] | |
| ||||||
Taverniera abyssinica A. | Dingetegna | Root | Ethiopia | Used to treat fever, discomfort and pain, stomach ache. | Four isoflavonoids | [290, 458, 459] |
| ||||||
Flacourtiaceae | ||||||
| ||||||
Flacourtia flavescens Willd. | Not signalized | Leaves | Mali | Antioxidant activity. | Not identified | [357] |
| ||||||
Geraniaceae | ||||||
| ||||||
Pelargonium reniforme Spreng. | Xhosa (Umckaloabo) | Root | Southern Africa | Used to treat liver disorders, laxative, purgative, cancer, and pulmonary disorders | Polyphenols: catechol (3′4′-dihydroxy) element in the B-ring, which possesses higher antioxidant activity than ascorbic acid. | [362, 460, 461] |
| ||||||
Gunneraceae | ||||||
| ||||||
Gunnera perpensa L. | River pumpkin | Root | South Africa | Decreased lucigenin enhanced chemiluminescence. | Not identified | [21, 462] |
| ||||||
Irvingiaceae | ||||||
| ||||||
Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill. | Bush mango | Seeds | Nigeria | Antioxidant activity. | Not identified | [12, 313, 463] |
| ||||||
Lamiaceae | ||||||
| ||||||
Leonotis leonurus (L.)R.Br. | Wild dagga | Leaves | South Africa | Anti-inflammatory properties. | Not identified | [13] |
| ||||||
Salvia stenophylla Burch. ex Benth. | Sage | Leaves | South Africa | Solvent extracts: antioxidant activity but poor anti-inflammatory properties. | Not identified | [360] |
| ||||||
S. repens Burch. | Not signalized | Leaves | South Africa | Solvent extracts: antioxidant activity but poor anti-inflammatory properties. | Not identified | [360] |
| ||||||
S. runcinata L.f. | Not signalized | Leaves | South Africa | Solvent extracts: antioxidant activity but poor anti-inflammatory properties. | Not identified | [360] |
| ||||||
Loranthaceae | ||||||
| ||||||
Tapinanthus globiferus Tiegh. | Not signalized | Leaves | Niger | Antioxidant activity | Not identified | [11] |
| ||||||
Malvacea | ||||||
| ||||||
Adansonia digitata (L.) | English: baobab, Afrikaans: kremetart, Hausa: kuka, Sotho: seboi, Tswana: mowana, Tsonga: shimuwu, Venda: muvhuyu, Arabic: tabladi | Leaves, root, bark and fruits | All over Africa, but limited trees in Central Africa | Antioxidant, analgesic and anti-inflammatory properties of extracts | L-ascorbic acid | [36, 464] |
| ||||||
Mimosaceae | ||||||
| ||||||
Albizia lebbeck (L.) Benth. | East Indian walnut, frywood, koko, lebbek, lebbek tree, rain tree, raom tree, silver raintree, siris rain tree, siris tree, soros-tree, woman’s tongue. | Leaves and bark | Egypt | Used to treat asthma and skin disorders (bark) and eye diseases and dysentery (leaves) | Two new tri-O-glycoside flavonols: kaempferol and quercetin 3-O-alpha-rhamnopyranosyl(1→6)-beta-glucopyranosyl(1→6)-beta- galactopyranosides | [465] |
| ||||||
Moraceae | ||||||
| ||||||
Dorstenia angusticornis Engl. | Not signalized | Twigs | Cameroon | Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. | Two novel diprenylated chalcones: 3,5′-di-(2-hydroxy-3-methylbut-3-enyl)-4,2′,4′-trihydroxychalcone, 3, 4-(2,2-dimethylpyrano)-3′-(2-hydroxy-3-methylbut-3-enyl)-2′,4′-dihydroxych alcone and the known stipulin. | [67, 278] |
| ||||||
D. dinklagei Engl. | Not signalized | Twigs | Cameroon | Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. | Three prenylated flavonoids, dinklagins A, B and C identified, respectively, as | [67, 226] |
| ||||||
D. elliptica Bur. | Not signalized | Twigs | Botswana | Used to treat eye infection. | Monoprenylated flavan | [466] |
| ||||||
D. Kameruniana. Engl. | Not signalized | Leaves | Botswana | Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. | Two novel favonoids: 6,7-(2,2-dimethylchromano)-5,4′-dihydroxyfavone and 3,4-,4′,5′-bis-(2,2-dimethylchromano)-2′-hydroxychalcone together with the known 6-(3-methylbut-2-enyl)apigenin and two chalcones (E)-1-[2,4-dihydroxy-3-[3-methylbut-2-enyl]phenyl]-3-[4-hydroxyphenyl]-prop-2-en-1-one and (E)1-[2,4-dihydroxy-5-[3-methylbut-2-enyl]phenyl]-3-[4-hydroxy-3-[3-methylbut-2-enyl]phenyl]-prop-2-en-1-one. | [467] |
| ||||||
D. prorepens Engl. | Not signalized | Twigs | Botswana | Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. | Digeranylated chalcone, 5,3′-(3,7-dimethyl-2,6-octadienyl)-3,4, 2′,4′-tetrahydroxychalcone. | [67, 468] |
| ||||||
D. poinsettiifolia Engl. | Not signalized | Twigs | Botswana | Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. | Grenylated and prenylated flavonoids. In addition, the flavone 5,7,4-trihydroxy-8-prenylflavone (licoflavone C), the chalcones 4,2′,4′-trihydroxy-3′-prenylchalcone (isobavachalcone) and isobavachromene, the triterpene butyrospermol, and the carotenoid lutein. | [67, 206, 289] |
| ||||||
D. zenkeri Engl. | Not signalized | Twigs | Botswana | Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. | 3′,4′-(3-hydroxy-2,2-dimethyldihydropyrano)-4,2′-dihydroxychalcone and a bichalcone. | [67, 468] |
| ||||||
Moringaceae | ||||||
| ||||||
Moringa oleifera Lam. | Horse-radish tree | Root | West Africa | Anti-inflammatory activity. | Not identified | [469] |
| ||||||
Myrtaceae | ||||||
| ||||||
Eucalyptus camaldulensis Dehnh. | Not signalized | Leaves | Egypt | Antioxidant activity | Not identified | [470] |
| ||||||
Polygonaceae | ||||||
| ||||||
Polygonum senegalense | Fotsimbarin’akoholahy | Leaves | Madagascar | Flavonoids: quercetin, kaempferol and luteolin and their glycosides such as dihydrochalcone glucoside and quercetin glycosides. | [413, 471] | |
| ||||||
Rumex abyssinicus Jacq. | Mekmeko | Leaves | N. Africa - Ethiopia | Anti-inflammatory properties | Flavonoids. | [337, 472] |
| ||||||
R. nervosus Vahl., | Alcgango | Leaves | Ethiopia | Anti-inflammatory properties. | Not identified | [337] |
| ||||||
Rubiaceae | ||||||
| ||||||
Nauclea latifolia Smith | Pin Cushion Tree | Leaves and root | Nigeria | Used as anthelmintic and to treat malaria, fever, stomachache and liver diseases. | Proanthocyanidins. | [12, 58, 473–475] |
| ||||||
Solanaceae | ||||||
| ||||||
Datura stramonium L. | Thorn-apple rwiziringa | Seeds | South Africa | Antioxidant activity. | Not identified | [188] |
| ||||||
Tiliaceae | ||||||
| ||||||
Grewia occidentalis L. | Cross-berry | Bark | South Africa | Antioxidant activity. | Not identified | [188] |
| ||||||
Vahliaceae | ||||||
| ||||||
Vahlia capensis (L.f) Thunb. | Vahlia of the Cape | Zimbabwe | Used to treat bacterial infections. | Kaempferol, quercetin, afzelin, astragalin, quercitrin, isoquercitrin, rutin, gallic acid, chiro-inositol, dulcitol, and a novel biflavonoid, VC-15B (vahlia biflavone) | [475] | |
| ||||||
Vitaceae | ||||||
| ||||||
Cyphostemma natalitium (Szyszl.) J.v. d. Merwe | Tick-berry bush | Root | South Africa | Anti-inflammatory and anti-microbial agents with significant inhibition of COX-1 | Not identified | [374] |
| ||||||
Rhoicissus digitata Gilg. & Brandt | Wilde patatat | Roots, stems and leaves | South Africa | At high concentrations possessed some prooxidative properties. Anti-inflammatory and anti-microbial agents with significant inhibition of COX-1. | Not identified | [364, 374] |
| ||||||
R. rhomboidea | Glossy forest grape | Roots, stems and leaves | South Africa | Radical scavenging activity, inhibitory effect on xanthine oxidase activity, prevention of lipid peroxidation and damage to DNA and ability to chelate iron. Anti-inflammatory through inhibition of COX-1. | Not identified | [364, 374] |
| ||||||
R. tomentosa (Lam.) | Wild grape Forest Grape, Monkey rope, | Roots, stems and leaves | South Africa | Antioxidant and anti-inflammatory activities. | Not identified | [364, 374] |
| ||||||
R. tridentata (L.f.) Wild & Drum. | Bitter grape | Roots, stems and leaves | South Africa | Radical scavenging activity, inhibitory effect on xanthine oxidase activity, prevention of lipid peroxidation and damage to DNA and ability to chelate iron. Anti-inflammatory through inhibition of COX-1. | Not identified | [364, 374, 476] |
Many edible and culinary herbs and condiments were also included in these two tables as they were used in certain instances as medicinal herbs to treat diseases. These included fruits and seeds of Balanites aegyptiaca, leaves of Boscia senegalensis, leaves of Entada africana and seeds of Parkia biglobosa, from Niger [11], also leaves, seeds, and stem-bark of Mangifera indica from Benin and Burkina Faso [12, 13], leaves of Cynara scolymus from Ethiopia [14, 15], leaves of Aspalathus linearis from South Africa [16–21], leaves of Cinnamomum zeylanicum from Madagascar and Ethiopia [22–24], essential oils from the bark and leaves of Ravensara aromatica from Madagascar [23, 25], buds of Syzygium aromaticum from Madagascar [23], seeds of Trigonella foenumgraecum from Ethiopia and Morocco [26–28], and oils in seeds of Nigella sativa from African countries of the Mediterranean region [29–31].
2. Tests Used to Assess Antioxidant Activities of African Medicinal Plant Extracts
A variety of test systems were employed to assess the antioxidant properties of the medicinal plant extracts and compounds listed in Tables 1 and 2. A comprehensive list of the methods used in antioxidant activity determination, as well as their merits and demerits, has already been published [343–346]. The methods used in the determination of antioxidant activity of natural products and isolated compounds result in varied outcomes when the same samples are tested in different laboratories and by other researchers [347]. Furthermore, results of different methods cannot be correlated, as contradictory results are usually obtained. Hence, although several assays are available, none of them is capable of accurately and completely determining the antioxidant activity of a test substance because of the complex nature of the redox-antioxidant system in vivo (Figure 2). Based on this complexity, antioxidants are broadly classified as (i) inhibitors of free radical formation, (ii) free radical scavengers, (iii) cellular and tissue damage repairers, and (iv) signalling messengers [347].
[figure omitted; refer to PDF]The inhibition of free radical formation could protect against oxidative damage by suppressing the formation of active ROS/RNS. This typically involves reduction or inhibition of substrates required for free radical formation such as metal ions like iron (Fe) and copper (Cu). The sequestration of these metal ions by antioxidant compounds like ellagic acid and glutathione is known to suppress formation of hydrogen peroxide (H2O2) and other free radicals [348, 349]. Furthermore, increasing evidence suggests a relationship between metal overload and several chronic diseases through the induction of oxidative stress [350]. Therefore, inhibition of free radical formation using metal ions as targets could be useful therapeutically. Antioxidant assays designed for this purpose include the cupric and ferric reducing antioxidant power (CUPRAC/FRAP). These methods measure the ability of antioxidants to reduce cupric (Cu2+) and ferric (Fe3+) ions, respectively.
Another mechanism by which antioxidants act is through the suppression of oxidative stress by directly scavenging active free radicals. Most commonly reported antioxidant assays such as 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2′-diphenyl-p-picrylhydrazyl radical (DPPH), oxygen radical absorbance capacity (ORAC), Trolox equivalent antioxidant capacity (TEAC), total oxyradical scavenging capacity (TOSC), and total radical antioxidant parameter (TRAP) are focused on testing the ability to scavenge free radicals. Furthermore, there are diverse cellular antioxidant assays that assess the ability of antioxidant compounds and substances to protect cells against excessive free radical generation. Such assays involve the use of a fluorescent compound such as 2,7-dichlorofluoroscein to determine the ability of test samples to quench intracellularly generated free radicals and inhibit radical formation and lipid peroxidation [345].
There are also numerous reports of the ability of antioxidants to repair damaged tissues and improve healing. Topical application of kojic acid and deferiprone, two compounds with the ability to scavenge free radicals, enhanced healing of wounds in rats [351]. Also, the mitochondria-targeted antioxidant, 10-(6′-plastoquinonyl) decyltriphenylphosphonium, accelerated wound closure, stimulated epithelialization, granulation tissue formation, and vascularization, and lowered lipid peroxidation in mice [352]. Moreover, an antioxidant peptide (cathelicidin-OA1) promoted wound healing in a mouse model with full-thickness skin wounds, accelerated reepithelialization and granulation tissue formation by enhancing the recruitment of macrophages to the wound site, and induced cell proliferation and migration [353]. Some antioxidants have also been reported to contribute to healing by enhancing the activity of endogenous antioxidant compounds and enzymes. The induction of the nuclear factor E2-related factor 2-(Nrf2) mediated antioxidative pathway by a rhomboid family protein (RHBDF2) promoted healing of injured tissues, suggesting a relationship between antioxidant gene induction and healing [354]. Niconyl-peptide enhanced wound healing and protected against hydrogen peroxide-induced cell death by increasing the expression of Nrf2 expression in human keratinocytes [355].
The most common tests used to determine the antioxidant activity of samples included the assessment of the ability to scavenge free radicals such as DPPH, ABTS+ [16, 19, 35, 62, 85, 94, 98, 99, 139, 158, 175, 184, 187, 266, 282, 302, 356–364], or the hydroxyl radicals [79, 188, 267, 365, 366], as well as the hydroperoxyl radicals by the Briggs-Rauscher reaction [104]. The ability of the extracts to chelate metal ions was also determined as further indication of their ability to contribute in the reduction of free radicals such as the hydroxyl radical [114]. In addition, assessment of the ability of these medicinal plant extracts to protect against lipid peroxidation was also included, which in turn was measured by the malondialdehyde-thiobarbituric acid (MDA) test [320, 367], the modified thiobarbituric acid reactive species (TBARS) assay [18, 22], or conjugated diene formation [367]. Moreover, lipid peroxidation was assessed using the fluorescent probe, diphenyl-1-pyrenylphosphine (DPPP) [188], or using the inhibition of Cu(2+)-mediated oxidation of human low-density lipoprotein (LDL) [187, 367]. The ability of extracts to protect against damage to DNA using the Comet assay was also employed [114, 188].
The antioxidant capacity of the medicinal plant extracts was determined using either the TEAC or FRAP assays [11, 85, 302, 313, 321, 368]. The ability of extracts to modulate the gene expression of the antioxidant enzymes, such as Cu, Zn-superoxide dismutase (Cu, Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase, and glutathione peroxidase (GPx), was also used as a measure of their antioxidant properties [293]. The photochemilumiescence (PLC) assay is a more recent antioxidant capacity assessment method and was employed for the evaluation of antioxidant capacity of baobab fruit pulp extracts [369].
Anti-inflammatory properties of these extracts were assessed by their ability to inhibit 5-lipoxygenases [94, 370, 371] or cyclooxygenase (COX-1 and COX-2) activities [65, 275, 317, 372, 373]. Using the former [374] and the latter [264, 331] methodologies, respectively, a great number of South African medicinal plant extracts were screened for their anti-inflammatory properties. The effect of medicinal extracts on the biosynthesis of different prostaglandins was assessed as a measure of their anti-inflammatory effect [239, 337, 375]. Extracts of Podocarpus species were shown to inhibit the activities of the COX enzymes [317]. Once again, using this test, the anti-inflammatory properties of the aqueous and ethanolic extracts of 39 plants used in traditional Zulu medicine were screened [376]. The Hen’s Egg Test-Chorioallantoic Membrane (HET-CAM) assay which utilizes the CAM’s capillary system in bred hen eggs was also used to assess the anti-inflammatory activity through antiangiogenic effects of the ethanol and aqueous extracts of Drosera rotundifolia and D. madagascariensis [155].
The antioxidant and anti-inflammatory abilities of the herbal extracts were further assessed by evaluating their ability to control the production of ROS produced by oxidative burst in neutrophils stimulated with L-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) [21, 246]. The inhibition of neutrophils elastase was used as a measure of anti-inflammatory property and it was proposed that the presence of flavonoids such as hyperoside, quercetin, and isoquercitrin in D. rotundifolia [377] and five flavonoid compounds in two Polypodium species (P. decumanum and P. triseriale) [378] were thought to contribute to this anti-inflammatory activity. These and other in vitro tests were used to assess the antioxidant properties of three Ghanaian species: Spathodea campanulata, Commelina diffusa, and Secamone afzelii [63].
Inflammation is a complex mechanism with many pathways. Several extracts derived from medicinal plants have been shown to modulate or inhibit the activities of mediators of inflammation. For instance, kolaviron, a bioflavonoid compound isolated from the seeds of Garcinia kola, has been reported to possess anti-inflammatory and antioxidant activities via its effects on COX-2 and inducible nitric oxide synthase (iNOS) by inhibiting the expression of nuclear factor kappa B (NF-κB) [115]. Quercetin is a flavonoid molecule ubiquitous in nature and functions as an antioxidant and anti-inflammatory agent. Dose- and time-dependent effects of quercetin have been investigated on proinflammatory cytokine expression and iNOS, focusing on its effects on NF-κB signal transduction pathways in lipopolysaccharide-stimulated RAW 264.7 cells by using real time polymerase chain reaction (RT-PCR) and immunoblotting. Curcumin, a yellow pigment of turmeric, has been shown to exhibit anti-inflammatory activity. Curcumin has been found effective in the treatment or control of chronic inflammatory conditions such as rheumatism, atherosclerosis, type II diabetes, and cancer [203]. Calixto et al. reported that the anti-inflammatory action of active spice-derived components results from the disruption of the production of various inflammatory proteins (e.g., cytokines such as tumour necrosis factor-alpha (TNF-α), iNOS, and COX-2) [379].
Animal studies were also conducted to assess the antioxidant properties of several medicinal extracts. The antioxidant potential of Hypericum perforatum, containing many polyphenolic compounds, was evaluated on splanchnic artery occlusion (SAO) shock-mediated injury [477] and also against elevated brain oxidative status induced by amnestic dose of scopolamine in rats [126]. Some medicinal plant extracts were tested for their ability to protect against carbon tetrachloride-, 2-acetylaminofluorene- (2-AAF-), and galactosamine-induced liver as well as aflatoxin B1-(AFB1-)induced genotoxicity. Using this test, it was found that an extract of Garcinia kola seeds [116, 478, 479], a decoction of Trichilia roka root [270], extracts of Entada africana [442], and Thonningia sanguinea [98, 480] possessed protective abilities. The antioxidant properties of plant extracts against potassium bromate (KBrO(3))-induced kidney damage showed the ability of G. kola seed extract to protect the kidneys [481].
Animal studies were also used to assess the anti-inflammatory ability of a great number of medicinal plant extracts using the carrageenan-induced rat paw oedema model. Plants investigated include seed extracts of Picralima nitida [399], crude methanol extract of the root of Moringa oleifera [469], powdered leaves and root of Mallotus oppositifolium [167], methanolic extract of Picralima nitida fruit [400], hot water extract of Alstonia boonei root-bark, Rauvolfia vomitoria root-bark, and Elaeis guineensis nuts [56], secondary root aqueous extract of Harpagophytum procumbens [303], crude extracts of Sphenocentrum jollyanum [272], aqueous and methanolic extracts of Hypoxis hemerocallidea corm [482], aqueous and methanolic extracts of Sclerocarya birrea stem-bark [483], aqueous extract of Mangifera indica stem-bark [13], aqueous extracts of Leonotis leonurus leaves [484], leaf extracts of Bryophyllum pinnatum [148], methanol extracts of the stem-bark of Alstonia boonei [485], aerial parts of Amaranthus caudatus [486], methanolic extracts of Kigelia pinnata flower [415], and leaf and twig extracts of Dorstenia barteri [276]. In all of these studies, the anti-inflammatory effect against carrageenan-induced rat paw oedema was attributed to flavonoids and other polyphenolic compounds. Animal tests also employed to assess the anti-inflammatory effects of the medicinal plant extracts included inflammatory cell response such as neutrophil chemotaxis and degranulation [112, 487], antiatherosclerosis effects [486], and pain assessment in experimental animals [117].
The effect of the medicinal plants on the induction or inhibition of drug metabolizing enzymes was also studied in animals. The effect of the aqueous extract of Thonningia sanguinea on 7-ethoxyresorufin O-deethylase (EROD, CYP1A1), 7-pentoxyresorufin O-dealkylase (PROD, CYP2B1/2), 7-methoxyresorufin O-demethylase (MROD, CYP1A2), aniline hydroxylase (aniline, CYP2E1), p-nitrophenol hydroxylase (PNPH, CYP2E1), and erythromycin N-demethylase (ERDM, CYP3A1) in rat liver was found to selectively modulate CYP isoenzymes [100] and suppress CYP3A2 and CYP1A2 gene expression [101].
3. Compounds Isolated from African Medicinal Plant Extracts with Confirmed Antioxidant Activities
Several medicinal plant extracts were studied at research centres in African countries for their antioxidant properties. The major findings of these investigations have indicated that, in addition to known antioxidant compounds such as ascorbic acid in the seeds of Parkia biglobosa [204] and fruits pulp of Adansonia digitata [369], alpha-tocopherol in methanol extracts of the stems of Secamone afzelii [62] or from the seeds [38] and methanol extracts of leaves of Amaranthus caudatus [39], and apigenin and luteolin in aerial parts of Bulbine capitata [66], several other antioxidant compounds were identified. Although known antioxidant compounds such as ascorbic acid have been confirmed to promote wound healing, not all the newly identified compounds have been tested for such activity [488–491].
The identified compounds included mainly flavonoids such as flavones and flavonols, flavone and flavonol glycosides, chalcones and dihydrochalcones, and flavonones, although some anthocyanins, proanthocyanidins, and anthrones were also isolated with antioxidant properties. A wide range of plant extracts investigated have been shown to contain flavonoids. Dorstenia species are rich in flavonoids some of which are unique to this genus [67, 205], namely, prenylated flavonoids as found in Dorstenia kameruniana and twigs of D. mannii [206, 207]. Earlier studies have shown that prenylated flavonoids had antioxidant properties, which protected human LDL from oxidation [208]. Those isolated from African medicinal plant extracts were also tested and their antioxidant properties confirmed. The antioxidant activities of three prenylated flavonoids from D. mannii (6,8-diprenyleriodictyol, dorsmanin C, 7,8-(2,2-dimethylchromeno)-6-geranyl-3,5,3′,4′-tetrahydroxyflavonol and dorsmanin F, (+)-7,8-[2′′-(1-hydroxy-1-methylethyl)-dihydrofurano]-6-prenyl-5,3′,4′-trihydroxyflavanone) against LDL oxidation and also their free radical scavenging activity have been indicated [187]. Similarly, a diprenylated chalcone, Bartericin A, present in D. barteri leaf and twig extracts was shown to have potent antioxidant properties. It was found that this and other prenylated and geranylated chalcones were as active as the prenylated flavones and may account for the anti-inflammatory action of these extracts [276]. Free radical scavenging activity was also confirmed for prenylated anthronoids isolated from the stem-bark of Harungana madagascariensis [121] and for proanthocyanidins isolated from the bark of Burkea africana [175]. The anti-inflammatory and antioxidant activities of kolaviron, a biflavonoid isolated from a Garcinia kola seed extract to scavenge free radicals, which protect against lipid peroxidation and H2O2-induced DNA strand breaks and oxidized bases, were also reported [114, 116–119, 209]. In addition, the ability of free radical scavenging activity and ability to inhibit lipid peroxidation of Thonningianin A and Thonningianin B, ellagitannins, isolated from Thonningia sanguinea have been shown [99, 366]. The anti-inflammatory ability of Griffonianone D ((7E)-(6′′,7′′-dihydroxy-3′′,7′′-dimethyloct-2′′-enyl)oxy-4′-methoxyisoflavone), an isoflavone present in Millettia griffoniana, has been established [195]. Prenylated anthronoids, harunmadagascarins A (8,9-dihydroxy-4,4-bis-(3,3-dimethylallyl)-6-methyl-2,3-(2,2-dimethylpyrano)anthrone and B (8,9-dihydroxy-4,4,5-tris-(3,3-dimethylallyl)-6-methyl-2,3-(2,2-dimethylpyrano)anthrone), harunganol B, and harungin anthrone from the stem-bark of Harungana madagascariensis have exhibited significant antioxidant activity [121]. Saponins and isofuranonaphthoquinones isolated from different medicinal plant extracts showed antioxidant properties and include the saponin, Balanin 1 (3β,12β,14β,16β) cholest-5-ene-3,16-diyl bis (β-d-glucopyranoside)-12-sulphate, sterol sulfonated, Balanin 2 (3β,20S,22R,25R)-26-hydroxy-22-acetoxyfurost-5-en-3-yl-rhamnopyranosyl-(1→2)-glucopyranoside, and a furostanol saponin isolated from Balanites aegyptiaca [104]. Isofuranonaphthoquinones isolated from the roots of Bulbine capitata, 5,8-dihydroxy-1-tigloylmethylnaphtho[2,3-c]furan-4,9-dione, 1-acetoxymethyl-8-hydroxynaphtho [2,3-c]furan-4,9-dione, and 1-acetoxymethyl-5,8-dihydroxynaphtho[2,3-c]furan-4,9-dione possess antioxidant activities [68]. Though none of these antioxidant compounds has been directly assessed for wound healing potential, the enhanced wound closure observed with treatment of prenylated flavonoids such as genistein [492] and the demonstrated effect of chalcones on the inflammation process [493] attest to the potential of isolated antioxidants in wound management.
4. Crude Extracts of African Medicinal Plants with Confirmed Antioxidant Activities
The antioxidant properties of a larger proportion of African medicinal plants listed in Tables 1 and 2 were tested using either aqueous or organic plant extracts. After confirming antioxidant properties, a correlation was proposed between this property and the general groups of antioxidant compounds that are present in these extracts. No further attempts were made to isolate the specific compounds that may have contributed towards this property. Flavonoids in Aloe barbadensis [32], chromone glycosides in A. claviflora [35], essential oils in Artemisia abyssinica, and Juniperus procera [79] as well as Helichrysum dasyanthum, H. felinum, H. excisum, and H. petiolare [94], proanthocyanidins in Burkea africana bark [175], polyphenols in extracts of Crataegus monogyna [321], saponins, and alkaloids in extracts of Leucosidea sericea [210, 211] are all considered as major compounds that have contributed to the antioxidant properties of these plants. Reports on a number of Barleria species, which includes B. albostellata, B. greenii, and B. prionitis, have indicated their anti-inflammatory [212] and antioxidant capacities [213]. Unlike the isolated compounds, most of the plants listed for possessing antioxidant activity, including extracts of Agerantum conyzoides, Euphorbia hirta, Kigelia africana, and Nauclea latifolia, have been shown to possess wound healing ability [494–496].
Furthermore, studies have focused on screening a vast number of plants, used in a specific region, so as to determine their antioxidant properties, Mali [357], South Africa [19, 188, 267, 364], Cameroon [182, 313], Algeria [85], Ghana [98], Burkina Faso [266], Madagascar [23], and Mauritius [293], and anti-inflammatory properties, South Africa [168, 264, 374, 376] and West Africa [400].
5. Discussion and Conclusion
The use of traditional herbal remedies as alternative medicine plays a significant role in Africa since it features extensively in primary health care. The search for natural antioxidants, especially from plant sources, as a potential intervention for treatment of free radical mediated diseases is an important research field, especially for those in developing countries. Many polyphenols, including phenolic acids, flavonoids (anthocyanins and anthoxanthins), tannins, and lignans, are known to act as antioxidants and protect against various pathological conditions such as coronary artery disease and wounds, in addition to their anti-inflammatory, antimicrobial, and anticancer activities [214–216].
Flavonoids are a large group of compounds containing several hydroxyl groups on their ring structures and include isoflavonoids and isoflavonoid glycosides, flavones, and flavone glycosides, flavonols and flavonol glycosides, anthocyanins, chalcones and dihydrochalcones, aurones, flavonones and dihydroflavonols, and flavans and biflavonyls. To date, approximately 9000 different flavonoids have been identified from plant sources [217]. Great interest has been dedicated to the antioxidant properties of flavonoids that may function as potent free radical scavengers, reducing agents, and protectors against peroxidation of lipids [208, 218]. Reviews have been published documenting numerous studies on antioxidant efficacy of flavonoids and phenolic compounds as well as on the relationship between their antioxidant activities, as hydrogen donating free radical scavengers, in relation to their chemical structures. The importance of the unsaturation in the C ring of quercetin compared to catechin in the increased antioxidant activity of the former has been presented [216, 219–223]. Also, the importance of the position and number of hydroxyl groups on the phenolic rings in increasing or decreasing the antioxidant properties of these compounds has been emphasized [216, 219–223].
Although many flavonoids have been isolated from different African medicinal plant extracts, the structure-activity relationship of these compounds has not yet been investigated. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response [224]. Examples of these include the lipophilic flavones and flavonols 5,7-dihydroxy-2′,3′,4′,5′-tetramethoxyflavone, 5,4′-dihydroxy-7,2′,3′,5′-tetramethoxyflavone, and 5,7,4′-trihydroxy-2′,3′,5′-trimethoxyflavone isolated from Psiadia punctulata [225] and Dinklagin B and C isolated from Dorstenia dinklagei [226]. Isolated flavone and flavonol glycosides include kaempferide 3-O-beta-xylosyl (1→2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4′-di-O-beta-galactoside, kaempferol 3,7,4′-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1→6)] [beta-glucosyl (1→2)]-beta-glucoside-7-O-alpha-rhamnoside from Warburgia ugandensis, and quercetin-7,4′-disulphate from Alchornea laxiflora [159]. Flavanones and dihydroflavonols include dorsmanin I and J and epidorsmanin F and G isolated from Dorstenia mannii [227] and Dinklagins A, isolated from the twigs of Dorstenia dinklagei [226] and two flavones isolated from the twigs of Eriosema robustum [182] and 1α,3β-dihydroxy-12-oleanen-29-oic (1), 1-hydroxy-12-olean-30-oic acid (2), 3,30-dihydroxyl-12-oleanen-22-one (3), and 1,3,24-trihydroxyl-12-olean-29-oic acid (4), a new pentacyclic triterpenoid (1α, 23-dihydroxy-12-oleanen-29-oic acid-3β-O-2,4-di-acetyl-l-rhamnopyranoside) (5) from Combretum imberbe [138]. Anthocyanins isolated include the cyanidins 3-O-(2′′-galloyl-β-galactopyranoside) and 3-O-(2′′-galloyl-6′′-O-α-rhamnopyranosyl-β-galactopyranoside) from Acalypha hispida [228] and cyanidin 3-O-β-D-glucopyranoside and cyanidin 3-O-(2-O-β-D-xylopyranosyl)-β-D-glucopyranoside from Hibiscus sabdariffa [266]. When revising the literature, it became apparent that even though most of these medicinal plants and compounds have confirmed antioxidant activity, not many of them have been screened for wound healing potential. As there is an association between antioxidative therapy and wound healing, research in this direction is as imminent as it is important. Furthermore, structure-activity studies on the isolated compounds from African medicinal extracts will be of great interest.
Antioxidants may exert their protective effects via different mechanisms at different stages of the oxidation process. There are those that are able to inhibit the production of free radicals via their ability to chelate transition metal ions and those that are able to quench and stabilise free radicals [229, 230]. Additionally, they are further subdivided into categories according to their functions [230]. Such classification of the newly isolated antioxidant compounds from African medicinal plant extracts is warranted to better understand their antioxidant properties.
It should be noted that the antioxidant activity of the extracts and compounds listed in this review was mostly determined using either single assays or in vitro analysis. It is therefore possible that some of these extracts and compounds may not show antioxidant activity when alternative testing methods are used. Furthermore, although in vivo studies are encouraged, most studies cited used in vitro assays. As antioxidant activity in vitro does not necessarily translate to activity in vivo, due to pharmacokinetic and pharmacodynamic processes that occurs in vivo, it is possible that samples may not be active when tested in animals. Activity of such samples should therefore be confirmed using animal models.
Additionally, attempts should be made to identify the compounds responsible for the proven antioxidant properties where not yet done, and in cases where they have been isolated, their wound healing properties should be investigated. If the activity of the compounds and plants identified in this review is confirmed in vivo, they could serve as viable sources for the treatment of wounds in future.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
[1] C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden, J. Cooke, D. Leaper, N. T. Georgopoulos, "Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process," International Wound Journal, vol. 12 no. 6,DOI: 10.1111/iwj.12557, 2015.
[2] E. Moasser, N. Azarpira, A. Ghorbani dalini, B. Shirazi, "Paraoxonase 1 (PON1) gene polymorphism and haplotype analysis in type 2 diabetes mellitus: a case–control study in the south Iranian population," International Journal of Diabetes in Developing Countries, vol. 38 no. 1, pp. 62-68, DOI: 10.1007/s13410-016-0544-z, 2018.
[3] A. Benabbou, M. B. Khaled, A. S. Alchalabi, "Evaluation of the Efficiency of Combined and Separated Antioxidant Supplementation of Vitamin C and E on Semen Parameters in Strepto-zotocin-Induced Diabetic Male Wistar Rats," South Asian Journal of Experimental Biology, vol. 7 no. 4, pp. 166-72, 2018.
[4] T. Kurahashi, J. Fujii, "Roles of Antioxidative Enzymes in Wound Healing," Journal of Developmental Biology, vol. 3 no. 2, pp. 57-70, DOI: 10.3390/jdb3020057, 2015.
[5] G. Calviello, G. M. Filippi, A. Toesca, P. Palozza, N. Maggiano, F. Di Nicuolo, S. Serini, G. B. Azzena, T. Galeotti, "Repeated exposure to pyrrolidine-dithiocarbamate induces peripheral nerve alterations in rats," Toxicology Letters, vol. 158 no. 1, pp. 61-71, DOI: 10.1016/j.toxlet.2005.02.008, 2005.
[6] B. Poljsak, D. Šuput, I. Milisav, "Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants," Oxidative Medicine and Cellular Longevity, vol. 2013,DOI: 10.1155/2013/956792, 2013.
[7] S. E. Atawodi, "Antioxidant potential of African medicinal plants," African Journal of Biotechnology, vol. 4 no. 2, pp. 128-133, 2005.
[8] E. O. Iwalewa, L. J. McGaw, V. Naidoo, J. N. Eloff, "Inflammation: the foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions," African Journal of Biotechnology, vol. 6 no. 25, pp. 2868-2885, DOI: 10.5897/AJB2007.000-2457, 2007.
[9] M. F. Mahomoodally, "Traditional medicines in Africa: an appraisal of ten potent African medicinal plants," Evidence-Based Complementary and Alternative Medicine, vol. 2013,DOI: 10.1155/2013/617459, 2013.
[10] G. R. Schinella, H. A. Tournier, J. M. Prieto, P. M. de Buschiazzo, J. L. Ríos, "Antioxidant activity of anti-inflammatory plant extracts," Life Sciences, vol. 70 no. 9, pp. 1023-1033, DOI: 10.1016/s0024-3205(01)01482-5, 2002.
[11] J. A. Cook, D. J. Vanderjagt, A. Dasgupta, G. Mounkaila, R. S. Glew, W. Blackwell, R. H. Glew, "Use of the trolox assay to estimate the antioxidant content of seventeen edible wild plants of niger," Life Sciences, vol. 63 no. 2, pp. 105-110, DOI: 10.1016/S0024-3205(98)00245-8, 1998.
[12] J. Igoli, O. Ogaji, T. Tor-Anyiin, N. Igoli, "Traditional Medicine Practice amongst the Igede People of Nigeria. Part II," African Journal of Traditional, Complementary and Alternative Medicines, vol. 2 no. 2,DOI: 10.4314/ajtcam.v2i2.31112, 2005.
[13] J. Ojewole, "Antiinflammatory, analgesic and hypoglycemic effects of Mangifera indica Linn. (Anacardiaceae) stem-bark aqueous extract," Methods and Findings in Experimental and Clinical Pharmacology, vol. 27 no. 8, pp. 547-554, DOI: 10.1358/mf.2005.27.8.928308, 2005.
[14] R. Gebhardt, "Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes," Toxicology and Applied Pharmacology, vol. 144 no. 2, pp. 279-286, DOI: 10.1006/taap.1997.8130, 1997.
[15] H. Li, N. Xia, I. Brausch, Y. Yao, U. Förstermann, "Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells," The Journal of Pharmacology and Experimental Therapeutics, vol. 310 no. 3, pp. 926-932, DOI: 10.1124/jpet.104.066639, 2004.
[16] L. Bramati, F. Aquilano, P. Pietta, "Unfermented Rooibos Tea: Quantitative Characterization of Flavonoids by HPLC-UV and Determination of the Total Antioxidant Activity," Journal of Agricultural and Food Chemistry, vol. 51 no. 25, pp. 7472-7474, DOI: 10.1021/jf0347721, 2003.
[17] L. Bramati, M. Minoggio, C. Gardana, P. Simonetti, P. Mauri, P. Pietta, "Quantitative characterization of flavonoid compounds in Rooibos tea (Aspalathus linearis) by LC-UV/DAD," Journal of Agricultural and Food Chemistry, vol. 50 no. 20, pp. 5513-5519, DOI: 10.1021/jf025697h, 2002.
[18] O. Inanami, T. Asanuma, N. Inukai, T. Jin, S. Shimokawa, N. Kasai, M. Nakano, F. Sato, M. Kuwabara, "The suppression of age-related accumulation of lipid peroxides in rat brain by administration of Rooibos tea (Aspalathus linearis)," Neuroscience Letters, vol. 196 no. 1-2, pp. 85-88, DOI: 10.1016/0304-3940(95)11853-O, 1995.
[19] K. L. Lindsey, M. L. Motsei, A. K. Jäger, "Screening of South African food plants for antioxidant activity," Journal of Food Science, vol. 67 no. 6, pp. 2129-2131, DOI: 10.1111/j.1365-2621.2002.tb09514.x, 2002.
[20] C. Rabe, J. A. Steenkamp, E. Joubert, J. F. W. Burger, D. Ferreira, "Phenolic metabolites from rooibos tea (Aspalathus linearis)," Phytochemistry, vol. 35 no. 6, pp. 1559-1565, DOI: 10.1016/S0031-9422(00)86894-6, 1994.
[21] V. Steenkamp, E. Mathivha, M. C. Gouws, C. E. J. Van Rensburg, "Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa," Journal of Ethnopharmacology, vol. 95 no. 2-3, pp. 353-357, DOI: 10.1016/j.jep.2004.08.020, 2004.
[22] M. T. Baratta, H. J. D. Dorman, S. G. Deans, A. C. Figueiredo, J. G. Barroso, G. Ruberto, "Antimicrobial and antioxidant properties of some commercial essential oils," Flavour and Fragrance Journal, vol. 13 no. 4, pp. 235-244, DOI: 10.1002/(sici)1099-1026(1998070)13:4<235::aid-ffj733>3.0.co;2-t, 1998.
[23] R. Juliani Hector, J. E. Simon, M. M. Roland Ramboatiana, O. Behra, A. S. Garvey, I. Raskin, "Malagasy aromatic plants: Essential oils, antioxidant and antimicrobial activities," Acta Horticulturae, vol. 629, pp. 77-81, DOI: 10.17660/ActaHortic.2004.629.9, 2004.
[24] J. Mancini-Filho, A. Van-Koiij, D. A. P. Mancini, F. F. Cozzolino, R. P. Torres, "Antioxidant activity of cinnamon (cinnamomum zeylanicum, breyne) extracts," Bollettino Chimico Farmaceutico, vol. 137 no. 11, pp. 443-447, 1998.
[25] S. Möllenbeck, T. König, P. Schreier, W. Schwab, J. Rajaonarivony, L. Ranarivelo, "Chemical composition and analyses of enantiomers of essential oils from Madagascar," Flavour and Fragrance Journal, vol. 12 no. 2, pp. 63-69, DOI: 10.1002/(SICI)1099-1026(199703)12:2<63::AID-FFJ614>3.3.CO;2-Q, 1997.
[26] N. Dilsiz, A. Sahaboglu, M. Z. Yildiz, A. Reichenbach, "Protective effects of various antioxidants during ischemia-reperfusion in the rat retina," Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244 no. 5, pp. 627-633, DOI: 10.1007/s00417-005-0084-6, 2006.
[27] R. Randhir, Y.-T. Lin, K. Shetty, "Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors," Asia Pacific Journal of Clinical Nutrition, vol. 13 no. 3, pp. 295-307, 2004.
[28] K. Srinivasan, K. Sambaiah, N. Chandrasekhara, "Spices as beneficial hypolipidemic food adjuncts: A review," Food Reviews International, vol. 20 no. 2, pp. 187-220, DOI: 10.1081/FRI-120037160, 2004.
[29] O. A. Badary, R. A. Taha, A. M. Gamal El-Din, M. H. Abdel-Wahab, "Thymoquinone is a potent superoxide anion scavenger," Drug and Chemical Toxicology, vol. 26 no. 2, pp. 87-98, DOI: 10.1081/DCT-120020404, 2003.
[30] N. Farah, H. Benghuzzi, M. Tucci, Z. Cason, "The effects of isolated antioxidants from black seed on the cellular metabolism of A549 cells," Biomedical Sciences Instrumentation, vol. 41, pp. 211-216, 2005.
[31] M. F. Ramadan, L. W. Kroh, J.-T. Mörsel, "Radical scavenging activity of black cumin ( Nigella sativa L.), coriander ( Coriandrum sativum L.), and Niger ( Guizotia abyssinica Cass.) crude seed oils and oil fractions," Journal of Agricultural and Food Chemistry, vol. 51 no. 24, pp. 6961-6969, DOI: 10.1021/jf0346713, 2003.
[32] S. Lee, S. Do, S. Y. Kim, J. Kim, Y. Jin, C. H. Lee, "Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera ( Aloe barbadensis Miller) in different growth stages," Journal of Agricultural and Food Chemistry, vol. 60 no. 45, pp. 11222-11228, DOI: 10.1021/jf3026309, 2012.
[33] X.-f. Zhang, H.-m. Wang, Y.-l. Song, L.-h. Nie, L.-f. Wang, B. Liu, P.-p. Shen, Y. Liu, "Isolation, structure elucidation, antioxidative and immunomodulatory properties of two novel dihydrocoumarins from Aloe vera," Bioorganic & medicinal chemistry letters, vol. 16 no. 4, pp. 949-953, 2006.
[34] M. Moniruzzaman, B. Rokeya, S. Ahmed, A. Bhowmik, M. I. Khalil, S. H. Gan, "In vitro antioxidant effects of aloe barbadensis miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on streptozotocin-induced type 2 diabetic model rats," Molecules, vol. 17 no. 11, pp. 12851-12867, DOI: 10.3390/molecules171112851, 2012.
[35] K. L. Lindsey, A. M. Viljoen, A. K. Jäger, "Screening of Aloe species for antioxidant activity," South African Journal of Botany, vol. 69 no. 4, pp. 599-602, DOI: 10.1016/S0254-6299(15)30302-1, 2003.
[36] S. O. Amoo, A. O. Aremu, J. Van Staden, "Unraveling the medicinal potential of South African Aloe species," Journal of Ethnopharmacology, vol. 153 no. 1, pp. 19-41, DOI: 10.1016/j.jep.2014.01.036, 2014.
[37] P. J. Zapata, D. Navarro, F. Guillén, S. Castillo, D. Martínez-Romero, D. Valero, M. Serrano, "Characterisation of gels from different Aloe spp. as antifungal treatment: Potential crops for industrial applications," Industrial Crops and Products, vol. 42 no. 1, pp. 223-230, DOI: 10.1016/j.indcrop.2012.06.002, 2013.
[38] R. Bruni, A. Guerrini, S. Scalia, C. Romagnoli, G. Sacchetti, "Rapid techniques for the extraction of vitamin E isomers from Amaranthus caudatus seeds: ultrasonic and supercritical fluid extraction," Phytochemical Analysis, vol. 13 no. 5, pp. 257-261, DOI: 10.1002/pca.651, 2002.
[39] P. Veeru, M. P. Kishor, M. Meenakshi, "Screening of medicinal plant extracts for antioxidant activity," Journal of Medicinal Plants Research, vol. 3 no. 8, pp. 608-612, 2009.
[40] D. M. Jiménez-Aguilar, M. A. Grusak, "Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables," Journal of Food Composition and Analysis, vol. 58, pp. 33-39, DOI: 10.1016/j.jfca.2017.01.005, 2017.
[41] O. O. Ajileye, E. M. Obuotor, E. O. Akinkunmi, M. A. Aderogba, "Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract," Journal of King Saud University - Science, vol. 27 no. 3, pp. 244-252, DOI: 10.1016/j.jksus.2014.12.004, 2015.
[42] R. Velagapudi, O. O. Ajileye, U. Okorji, P. Jain, M. A. Aderogba, O. A. Olajide, "Agathisflavone isolated from Anacardium occidentale suppresses SIRT1‐mediated neuroinflammation in BV2 microglia and neurotoxicity in APPS we‐transfected SH‐SY5Y cells," Phytotherapy Research, vol. 32 no. 10, pp. 1957-1966, DOI: 10.1002/ptr.6122, 2018.
[43] A. Maroyi, "Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives," Journal of Ethnobiology and Ethnomedicne, vol. 9, article 31,DOI: 10.1186/1746-4269-9-31, 2011.
[44] T. Munodawafa, L. S. Chagonda, S. R. Moyo, "Antimicrobial and phytochemical screening of some Zimbabwean medicinal plants," Journal of Biologically Active Products from Nature, vol. 3 no. 5-6, pp. 323-330, DOI: 10.1080/22311866.2013.782759, 2013.
[45] E. F. Queiroz, C. Kuhl, C. Terreaux, S. Mavi, K. Hostettmann, "New dihydroalkylhexenones from Lannea edulis," Journal of Natural Products, vol. 66 no. 4, pp. 578-580, DOI: 10.1021/np0202428, 2003.
[46] A. Maiga, K. E. Malterud, D. Diallo, B. S. Paulsen, "Antioxidant and 15-lipoxygenase inhibitory activities of the Malian medicinal plants Diospyros abyssinica (Hiern) F. White (Ebenaceae), Lannea velutina A. Rich (Anacardiaceae) and Crossopteryx febrifuga (Afzel) Benth. (Rubiaceae)," Journal of Ethnopharmacology, vol. 104 no. 1-2, pp. 132-137, DOI: 10.1016/j.jep.2005.08.063, 2006.
[47] L. Ouattara, J. Koudou, C. Zongo, N. Barro, A. Savadogo, I. H. N. Bassole, A. S. Ouattara, A. S. Traore, "Antioxidant and antibacterial activities of three species of Lannea from Burkina Faso," Journal of Applied Sciences, vol. 11 no. 1, pp. 157-162, DOI: 10.3923/jas.2011.157.162, 2011.
[48] R. Arora, D. Gupta, R. Chawla, R. Sagar, A. Sharma, R. Kumar, J. Prasad, S. Singh, N. Samanta, R. K. Sharma, "Radioprotection by plant products: present status and future prospects," Phytotherapy Research, vol. 19 no. 1,DOI: 10.1002/ptr.1605, 2005.
[49] Y.-J. Chen, Y.-S. Dai, B.-F. Chen, A. Chang, H.-C. Chen, Y.-C. Lin, K.-H. Chang, Y.-L. Lai, C.-H. Chung, Y.-J. Lai, "The effect of tetrandrine and extracts of centella asiatica on acute radiation dermatitis in rats," Biological & Pharmaceutical Bulletin, vol. 22 no. 7, pp. 703-706, DOI: 10.1248/bpb.22.703, 1999.
[50] G. Jayashree, G. Kurup Muraleedhara, S. Sudarslal, V. B. Jacob, "Anti-oxidant activity of Centella asiatica on lymphoma-bearing mice," Fitoterapia, vol. 74 no. 5, pp. 431-434, DOI: 10.1016/S0367-326X(03)00121-7, 2003.
[51] D. MacKay, A. L. Miller, "Nutritional support for wound healing," Alternative Medicine Review, vol. 8 no. 4, pp. 359-377, 2003.
[52] F. Pittella, R. C. Dutra, D. D. Junior, M. T. P. Lopes, N. R. Barbosa, "Antioxidant and cytotoxic activities of Centella asiatica (L) Urb.," International Journal of Molecular Sciences, vol. 10 no. 9, pp. 3713-3721, DOI: 10.3390/ijms10093713, 2009.
[53] J. Sharma, R. Sharma, "Radioprotection of Swiss Albino Mouse by Centella asiatica Extract," Phytotherapy Research, vol. 16 no. 8, pp. 785-786, DOI: 10.1002/ptr.1069, 2002.
[54] R. Sharma, J. Sharma, "Modification of gamma ray induced changes in the mouse hepatocytes by Centella asiatica extract: In vivo studies," Phytotherapy Research, vol. 19 no. 7, pp. 605-611, DOI: 10.1002/ptr.1684, 2005.
[55] A. Shukla, A. M. Rasik, B. N. Dhawan, "Asiaticoside-induced elevation of antioxidant levels in healing wounds," Phytotherapy Research, vol. 13 no. 1, pp. 50-54, DOI: 10.1002/(SICI)1099-1573(199902)13:1<50::AID-PTR368>3.0.CO;2-V, 1999.
[56] G. Kweifio-Okai, "Antiinflammatory activity of a Ghanaian antiarthritic herbal preparation: I," Journal of Ethnopharmacology, vol. 33 no. 3, pp. 263-267, DOI: 10.1016/0378-8741(91)90087-T, 1991.
[57] O. A. Olajide, J. M. Makinde, D. T. Okpako, S. O. Awe, "Studies on the anti-inflammatory and related pharmacological properties of the aqueous extract of Bridelia ferruginea stem bark," Journal of Ethnopharmacology, vol. 71 no. 1-2, pp. 153-160, DOI: 10.1016/S0378-8741(99)00201-9, 2000.
[58] B. B. Fakae, A. M. Campbell, J. Barrett, I. M. Scott, P. H. Teesdale-Spittle, E. Liebau, P. M. Brophy, "Inhibition of glutathione S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants," Phytotherapy Research, vol. 14 no. 8, pp. 630-634, DOI: 10.1002/1099-1573(200012)14:8<630::AID-PTR773>3.0.CO;2-5, 2000.
[59] N. Okoye, C. Okoye, "Anti-oxidant and Antimicrobial Flavonoid Glycosides from Alstonia boonei De Wild Leaves," British Journal of Pharmaceutical Research, vol. 10 no. 6,DOI: 10.9734/BJPR/2016/24809, 2016.
[60] W. Zheng, S. Y. Wang, "Antioxidant activity and phenolic compounds in selected herbs," Journal of Agricultural and Food Chemistry, vol. 49 no. 11, pp. 5165-5170, DOI: 10.1021/jf010697n, 2001.
[61] S. E. Atawodi, L. M. Yusufu, J. C. Atawodi, O. Asuku, O. E. Yakubu, "Phenolic Compounds and Antioxidant Potential of Nigerian Red Palm Oil (Elaeis Guineensis)," International Journal of Biology, vol. 3 no. 2,DOI: 10.5539/ijb.v3n2p153, 2011.
[62] A. Y. Mensah, P. J. Houghton, G. N. A. Akyirem, T. C. Fleischer, M. L. K. Mensah, K. Sarpong, R. Adosraku, "Evaluation of the antioxidant and free radical scavenging properties of Secamone afzelii Rhoem," Phytotherapy Research, vol. 18 no. 12, pp. 1031-1032, DOI: 10.1002/ptr.1614, 2004.
[63] P. J. Houghton, P. J. Hylands, A. Y. Mensah, A. Hensel, A. M. Deters, "In vitro tests and ethnopharmacological investigations: wound healing as an example," Journal of Ethnopharmacology, vol. 100 no. 1-2, pp. 100-107, DOI: 10.1016/j.jep.2005.07.001, 2005.
[64] H. Zabri, C. Kodjo, A. Benie, J. M. Bekro, Y. A. Bekro, "Phytochemical screening and determination of flavonoids in Secamone afzelii (Asclepiadaceae) extracts," African Journal of Pure and Applied Chemistry, vol. 2 no. 8, pp. 80-82, 2008.
[65] A. A. Wube, F. Bucar, K. Asres, S. Gibbons, M. Adams, B. Streit, A. Bodensieck, R. Bauer, "Knipholone, a selective inhibitor of leukotriene metabolism," Phytomedicine, vol. 13 no. 6, pp. 452-456, DOI: 10.1016/j.phymed.2005.01.012, 2006.
[66] M. Bezabhi, B. M. Abegaz, "4'-Demethylknipholone from aerial parts of Bulbine capitata," Phytochemistry, vol. 48 no. 6, pp. 1071-1073, DOI: 10.1016/S0031-9422(97)01053-4, 1998.
[67] R. R. T. Majinda, B. M. Abegaz, M. Bezabih, B. T. Ngadjui, C. C. W. Wanjala, L. K. Mdee, G. Bojase, A. Silayo, I. Masesane, S. O. Yeboah, "Recent results from natural product research at the University of Botswana," Pure and Applied Chemistry, vol. 73 no. 7, pp. 1197-1208, DOI: 10.1351/pac200173071197, 2001.
[68] M. Bezabih, B. M. Abegaz, K. Dufall, K. Croft, T. Skinner-Adams, T. M. E. Davis, "Antiplasmodial and antioxidant isofuranonaphthoquinones from the roots of Bulbine capitata," Planta Medica, vol. 67 no. 4, pp. 340-344, DOI: 10.1055/s-2001-14329, 2001.
[69] B. M. Abegaz, "Novel phenylanthraquinones, isofuranonaphthoquinones, homoisoflavonoids, and biflavonoids from African plants in the genera Bulbine, Scilla, Ledebouria, and Rhus," Phytochemistry Reviews, vol. 1 no. 3, pp. 299-310, DOI: 10.1023/A:1026066626537, 2002.
[70] B. M. Abegaz, M. Bezabih, T. Msuta, R. Brun, D. Menche, J. Mühlbacher, G. Bringmann, "Gaboroquinones A and B and 4′-O-demethylknipholone-4′-O- β -D-glucopyranoside, phenylanthraquinones from the roots of Bulbine frutescens," Journal of Natural Products, vol. 65 no. 8, pp. 1117-1121, DOI: 10.1021/np0201218, 2002.
[71] M. Bezabih, S. Motlhagodi, B. M. Abegaz, "Isofuranonaphthoquinones and phenolic and knipholone derivatives from the roots of Bulbine capitata," Phytochemistry, vol. 46 no. 6, pp. 1063-1067, DOI: 10.1016/S0031-9422(97)00402-0, 1997.
[72] G. J. Grubben, Plant Resources of Tropical Africa (PROTA), 2008.
[73] A. Mats' eliso, P. Karuso, "Secondary Metabolites from Basotho Medicinal Plants. II. Bulbine capitata," Australian Journal of Chemistry, vol. 54 no. 7, pp. 427-430, 2001.
[74] J. Mutanyatta, M. Bezabih, B. M. Abegaz, M. Dreyer, R. Brun, N. Kocher, G. Bringmann, "The first 6′-O-sulfated phenylanthraquinones: Isolation from Bulbine frutescens, structural elucidation, enantiomeric purity, and partial synthesis," Tetrahedron, vol. 61 no. 35, pp. 8475-8484, DOI: 10.1016/j.tet.2005.06.055, 2005.
[75] P. Tambama, B. Abegaz, S. Mukanganyama, "Antiproliferative activity of the isofuranonaphthoquinone isolated from Bulbine frutescens against jurkat T cells," BioMed Research International, vol. 2014,DOI: 10.1155/2014/752941, 2014.
[76] M. Adams, R. Bauer, "Inhibition of leukotriene biosynthesis by secondary plant metabolites," Current Organic Chemistry, vol. 12 no. 8, pp. 602-618, DOI: 10.2174/138527208784577349, 2008.
[77] S. Habtemariam, "Knipholone anthrone from Kniphofia foliosa induces a rapid onset of necrotic cell death in cancer cells," Fitoterapia, vol. 81 no. 8, pp. 1013-1019, DOI: 10.1016/j.fitote.2010.06.021, 2010.
[78] S. Habtemariam, "Antioxidant activity of Knipholone anthrone," Food Chemistry, vol. 102 no. 4, pp. 1042-1047, DOI: 10.1016/j.foodchem.2006.06.040, 2007.
[79] M. Burits, K. Asres, F. Bucar, "The antioxidant activity of the essential oils of Artemisia afra , Artemisia abyssinica and Juniperus procera," Phytotherapy Research, vol. 15 no. 2, pp. 103-108, DOI: 10.1002/ptr.691, 2001.
[80] S. A. Emami, J. Asili, Z. Mohagheghi, M. K. Hassanzadeh, "Antioxidant activity of leaves and fruits of Iranian conifers," Evidence-Based Complementary and Alternative Medicine, vol. 4 no. 3, pp. 313-319, DOI: 10.1093/ecam/nem011, 2007.
[81] M. Esteban, L. G. Collado, F. A. Macías, G. M. Massanet, F. R. Luis, "Flavonoids from Artemisia lanata," Phytochemistry, vol. 25 no. 6, pp. 1502-1504, DOI: 10.1016/S0031-9422(00)81325-4, 1986.
[82] V. Naidoo, L. J. McGaw, S. P. R. Bisschop, N. Duncan, J. N. Eloff, "The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens," Veterinary Parasitology, vol. 153 no. 3-4, pp. 214-219, DOI: 10.1016/j.vetpar.2008.02.013, 2008.
[83] L. V. Buwa, A. J. Afolayan, "Antimicrobial activity of some medicinal plants used for the treatment of tuberculosis in the Eastern Cape Province, South Africa," African Journal of Biotechnology, vol. 8 no. 23, pp. 6683-6687, 2009.
[84] B.-E. Van Wyk, B. v. Oudtshoorn, N. Gericke, Medicinal Plants of South Africa, 1997.
[85] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, "Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds," Food Chemistry, vol. 97 no. 4, pp. 654-660, DOI: 10.1016/j.foodchem.2005.04.028, 2006.
[86] A. Akrout, L. A. Gonzalez, H. El Jani, P. C. Madrid, "Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia," Food and Chemical Toxicology, vol. 49 no. 2, pp. 342-347, DOI: 10.1016/j.fct.2010.11.003, 2011.
[87] M. B. Naili, R. O. Alghazeer, N. A. Saleh, A. Y. Al-Najjar, "Evaluation of antibacterial and antioxidant activities of Artemisia campestris (Astraceae) and Ziziphus lotus (Rhamnacea)," Arabian Journal of Chemistry, vol. 3 no. 2, pp. 79-84, DOI: 10.1016/j.arabjc.2010.02.002, 2010.
[88] M. G. L. Brandão, C. G. C. Nery, M. A. S. Mamão, A. U. Krettli, "Two methoxylated flavone glycosides from Bidens pilosa," Phytochemistry, vol. 48 no. 2, pp. 397-399, DOI: 10.1016/S0031-9422(97)01113-8, 1998.
[89] Y.-M. Chiang, D.-Y. Chuang, S.-Y. Wang, Y.-H. Kuo, P.-W. Tsai, L.-F. Shyur, "Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa," Journal of Ethnopharmacology, vol. 95 no. 2-3, pp. 409-419, DOI: 10.1016/j.jep.2004.08.010, 2004.
[90] L.-P. Yuan, F.-H. Chen, L. Ling, P.-F. Dou, H. Bo, M.-M. Zhong, L.-J. Xia, "Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis," Journal of Ethnopharmacology, vol. 116 no. 3, pp. 539-546, DOI: 10.1016/j.jep.2008.01.010, 2008.
[91] F. Deba, T. D. Xuan, M. Yasuda, S. Tawata, "Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata," Food Control, vol. 19 no. 4, pp. 346-352, DOI: 10.1016/j.foodcont.2007.04.011, 2008.
[92] F. Fratianni, M. Tucci, M. D. Palma, R. Pepe, F. Nazzaro, "Polyphenolic composition in different parts of some cultivars of globe artichoke ( Cynara cardunculus L. var. scolymus (L.) Fiori)," Food Chemistry, vol. 104 no. 3, pp. 1282-1286, DOI: 10.1016/j.foodchem.2007.01.044, 2007.
[93] E. Speroni, R. Cervellati, P. Govoni, S. Guizzardi, C. Renzulli, M. C. Guerra, "Efficacy of different Cynara scolymus preparations on liver complaints," Journal of Ethnopharmacology, vol. 86 no. 2-3, pp. 203-211, DOI: 10.1016/S0378-8741(03)00076-X, 2003.
[94] A. C. U. Lourens, D. Reddy, K. H. C. Başer, A. M. Viljoen, S. F. van Vuuren, "In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species," Journal of Ethnopharmacology, vol. 95 no. 2-3, pp. 253-258, DOI: 10.1016/j.jep.2004.07.027, 2004.
[95] S. Albayrak, A. Aksoy, O. Sagdic, E. Hamzaoglu, "Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey," Food Chemistry, vol. 119 no. 1, pp. 114-122, DOI: 10.1016/j.foodchem.2009.06.003, 2010.
[96] A. C. U. Lourens, A. M. Viljoen, F. R. van Heerden, "South African Helichrysum species: a review of the traditional uses, biological activity and phytochemistry," Journal of Ethnopharmacology, vol. 119 no. 3, pp. 630-652, DOI: 10.1016/j.jep.2008.06.011, 2008.
[97] L. G. Ranilla, Y.-I. Kwon, E. Apostolidis, K. Shetty, "Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America," Bioresource Technology, vol. 101 no. 12, pp. 4676-4689, DOI: 10.1016/j.biortech.2010.01.093, 2010.
[98] M. A. Gyamfi, M. Yonamine, Y. Aniya, "Free-radical scavenging action of medicinal herbs from GhanaThonningia sanguinea on experimentally-induced liver injuries," General Pharmacology: The Vascular System, vol. 32 no. 6, pp. 661-667, DOI: 10.1016/S0306-3623(98)00238-9, 1999.
[99] I. I. Ohtani, N. Gotoh, J. Tanaka, T. Higa, M. A. Gyamfi, Y. Aniya, "Thonningianins A and B, new antioxidants from the African medicinal herb Thonningia sanguinea," Journal of Natural Products, vol. 63 no. 5, pp. 676-679, DOI: 10.1021/np990396w, 2000.
[100] M. A. Gyamfi, N. Hokama, K. Oppong-Boachie, Y. Aniya, "Inhibitory effects of the medicinal herb, Thonningia sanguinea, on liver drug metabolizing enzymes of rats," Human & Experimental Toxicology, vol. 19 no. 11, pp. 623-631, DOI: 10.1191/096032700667732543, 2000.
[101] M. A. Gyamfi, T. Tanaka, Y. Aniya, "Selective suppression of cytochrome P450 gene expression by the medicinal herb, Thonningia sanguinea in rat liver," Life Sciences, vol. 74 no. 14, pp. 1723-1737, DOI: 10.1016/j.lfs.2003.07.049, 2004.
[102] M. A. Gyamfi, I. I. Ohtani, E. Shinno, Y. Aniya, "Inhibition of glutathione S-transferases by thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea, in vitro," Food and Chemical Toxicology, vol. 42 no. 9, pp. 1401-1408, DOI: 10.1016/j.fct.2004.04.001, 2004.
[103] J. D. N'Guessan, A. P. Bidié, B. N. Lenta, B. Weniger, P. André, F. Guédé-Guina, "In vitro assays for bioactivity-guided isolation of anti salmonella and antioxidant compounds in Thonningia sanguinea flowers," African Journal of Biotechnology, vol. 6 no. 14, pp. 1685-1689, 2007.
[104] E. Speroni, R. Cervellati, G. Innocenti, S. Costa, M. C. Guerra, S. Dall'Acqua, P. Govoni, "Anti-inflammatory, anti-nociceptive and antioxidant activities of Balanites aegyptiaca (L.) Delile," Journal of Ethnopharmacology, vol. 98 no. 1-2, pp. 117-125, DOI: 10.1016/j.jep.2005.01.007, 2005.
[105] D. L. Chothani, H. U. Vaghasiya, "A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity," Pharmacognosy Reviews, vol. 5 no. 9, pp. 55-62, DOI: 10.4103/0973-7847.79100, 2011.
[106] A. El Tahir, A. M. Ibrahim, G. M. H. Satti, T. G. Theander, A. Kharazmi, S. A. Khalid, "The potential antileishmanial activity of some Sudanese medicinal plants," Phytotherapy Research, vol. 12 no. 8, pp. 576-579, DOI: 10.1002/(SICI)1099-1573(199812)12:8<576::AID-PTR354>3.0.CO;2-#, 1998.
[107] O. A. Binutu, B. A. Lajubutu, "Antimicrobial potentials of some plant species of the Bignoniaceae family.," African Journal of Medicine and Medical Sciences, vol. 23 no. 3, pp. 269-273, 1994.
[108] J. J. Rojas, V. J. Ochoa, S. A. Ocampo, J. F. Muñoz, "Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections," BMC Complementary and Alternative Medicine, vol. 6, article 2,DOI: 10.1186/1472-6882-6-2, 2006.
[109] A. Rana, S. Bhangalia, H. P. Singh, "A new phenylethanoid glucoside from Jacaranda mimosifolia," Natural Product Research (Formerly Natural Product Letters), vol. 27 no. 13, pp. 1167-1173, DOI: 10.1080/14786419.2012.717290, 2013.
[110] K. Ofori-Kwakye, A. A. Kwapong, F. Adu, "Antimicrobial activity of extracts and topical products of the stem bark of Spathodea campanulata for wound healing," African Journal of Traditional, Complementary and Alternative Medicines, vol. 6 no. 2, pp. 168-174, 2009.
[111] M. Marzouk, A. Gamal-Eldeen, M. Mohamed, M. El-Sayed, "Anti-proliferative and antioxidant constituents from Tecoma stans," Zeitschrift fur Naturforschung - Section C Journal of Biosciences, vol. 61 no. 11-12, pp. 783-791, 2006.
[112] L. Selloum, L. Sebihi, A. Mekhalfia, R. Mahdadi, A. Senator, "Antioxidant activity of Cleome arabica leaves extract," Biochemical Society Transactions, vol. 25 no. 4,DOI: 10.1042/bst025s608, 1997.
[113] U. S. Akula, B. Odhav, "In vitro 5-lipoxygenase inhibition of polyphenolic antioxidants from undomesticated plants of South Africa," Journal of Medicinal Plants Research, vol. 2 no. 9, pp. 207-212, 2008.
[114] E. O. Farombi, P. Møller, L. O. Dragsted, "Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells," Cell Biology and Toxicology, vol. 20 no. 2, pp. 71-82, DOI: 10.1023/B:CBTO.0000027916.61347.bc, 2004.
[115] E. O. Farombi, S. Shrotriya, Y.-J. Surh, "Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF- κ B and AP-1," Life Sciences, vol. 84 no. 5-6, pp. 149-155, DOI: 10.1016/j.lfs.2008.11.012, 2009.
[116] E. O. Farombi, J. G. Tahnteng, A. O. Agboola, J. O. Nwankwo, G. O. Emerole, "Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron—a Garcinia kola seed extract," Food and Chemical Toxicology, vol. 38 no. 6, pp. 535-541, DOI: 10.1016/S0278-6915(00)00039-9, 2000.
[117] S. Olaleye, E. Farombi, E. Adewoye, B. Owoyele, S. Onasanwo, R. Elegbe, "Analgesic and anti-inflammatory effects of kaviiron (a Garcinia kola seed extract)," African journal of biomedical research, vol. 3 no. 3, pp. 171-174, 2000.
[118] O. A. Adaramoye, O. Akinloye, "Possible protective effect of kolaviron on CCl4-induced erythrocyte damage in rats," Bioscience Reports, vol. 20 no. 4, pp. 259-264, DOI: 10.1023/A:1026488823157, 2000.
[119] O. A. Adaramoye, V. O. Nwaneri, K. C. Anyanwo, E. O. Farombi, G. O. Emerole, "Possible anti-atherogenic effect of kolaviron (a Garcinia kola seed extract) in hypercholesterolaemic rats," Clinical and Experimental Pharmacology and Physiology, vol. 32 no. 1-2, pp. 40-46, DOI: 10.1111/j.1440-1681.2005.04146.x, 2005.
[120] J. O. Nwankwo, J. G. Tahnteng, G. O. Emerole, "Inhibition of aflatoxin B1 genotoxicity in human liver-derived HepG2 cells by kolaviron biflavonoids and molecular mechanisms of action," European Journal of Cancer Prevention, vol. 9 no. 5, pp. 351-361, DOI: 10.1097/00008469-200010000-00010, 2000.
[121] S. F. Kouam, B. T. Ngadjui, K. Krohn, P. Wafo, A. Ajaz, M. I. Choudhary, "Prenylated anthronoid antioxidants from the stem bark of Harungana madagascariensis," Phytochemistry, vol. 66 no. 10, pp. 1174-1179, DOI: 10.1016/j.phytochem.2005.03.022, 2005.
[122] P.-C. N. Biapa, G. A. Agbor, J. E. Oben, J. Y. Ngogang, "Phytochemical studies and antioxidant properties of four medicinal plants used in Cameroon," African Journal of Traditional, Complementary and Alternative Medicines, vol. 4 no. 4, pp. 495-500, 2007.
[123] E. O. Iwalewa, I. O. Adewale, B. J. Taiwo, T. Arogundade, A. Osinowo, O. M. Daniyan, G. E. Adetogun, "Effects of Harungana madagascariensis stem bark extract on the antioxidant markers in alloxan induced diabetic and carrageenan induced inflammatory disorders in rats," Journal of Complementary and Integrative Medicine, vol. 5 no. 1, 2008.
[124] A. P. M. Bernardi, A. B. F. Ferraz, D. V. Albring, S. A. L. Bordignon, J. Schripsema, R. Bridi, C. S. Dutra-Filho, A. T. Henriques, G. L. Von Poser, "Benzophenones from Hypericum carinatum," Journal of Natural Products, vol. 68 no. 5, pp. 784-786, DOI: 10.1021/np040149e, 2005.
[125] J. D. M. Nunes, P. S. Pinto, S. A. D. L. Bordignon, S. B. Rech, G. L. von Poser, "Phenolic compounds in Hypericum species from the Trigynobrathys section," Biochemical Systematics and Ecology, vol. 38 no. 2, pp. 224-228, DOI: 10.1016/j.bse.2010.01.010, 2010.
[126] D. A. El-Sherbiny, A. E. Khalifa, A. S. Attia, E. D. Eldenshary, "Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine," Pharmacology Biochemistry & Behavior, vol. 76 no. 3-4, pp. 525-533, DOI: 10.1016/j.pbb.2003.09.014, 2003.
[127] A. Herold, L. Cremer, A. Calugaru, V. Tamaş, F. Ionescu, S. Manea, G. Szegli, "Antioxidant properties of some hydroalcoholic plant extracts with antiinflammatory activity.," Romanian Archives of Microbiology and Immunology, vol. 62 no. 3-4, pp. 217-227, 2003.
[128] A. Herold, L. Cremer, A. Calugaru, V. Tamaş, F. Ionescu, S. Manea, G. Szegli, "Hydroalcoholic plant extracts with anti-inflammatory activity.," Romanian Archives of Microbiology and Immunology, vol. 62 no. 1-2, pp. 117-129, 2003.
[129] H. Hosseinzadeh, G.-R. Karimi, M. Rakhshanizadeh, "Anticonvulsant effect of Hypericum perforatum: Role of nitric oxide," Journal of Ethnopharmacology, vol. 98 no. 1-2, pp. 207-208, DOI: 10.1016/j.jep.2004.12.007, 2005.
[130] D. Z. Orčić, N. M. Mimica-Dukić, M. M. Francišković, S. S. Petrović, E. T. Jovin, "Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L," Chemistry Central Journal, vol. 5 no. 1, 2011.
[131] Y. Zou, Y. Lu, D. Wei, "Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro," Journal of Agricultural and Food Chemistry, vol. 52 no. 16, pp. 5032-5039, DOI: 10.1021/jf049571r, 2004.
[132] M. A. Aderogba, D. T. Kgatle, L. J. McGaw, J. N. Eloff, "Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum," South African Journal of Botany, vol. 79, pp. 125-131, DOI: 10.1016/j.sajb.2011.10.004, 2012.
[133] P. H. Coombes, C. B. Rogers, "Methyl gardenolate A, a novel cycloartenoid ester from the leaves of Combretum woodii (Combretaceae)," Natural Product Research (Formerly Natural Product Letters), vol. 16 no. 5, pp. 301-304, DOI: 10.1080/10575630290020587, 2002.
[134] J. N. Eloff, J. O. Famakin, D. R. P. Katerere, "Combretum woodii (Combretaceae) leaf extracts have high activity against Gram-negative and Gram-positive bacteria," African Journal of Biotechnology, vol. 4 no. 10, pp. 1161-1166, 2005.
[135] J. N. Eloff, J. O. Famakin, D. R. P. Katerere, "Isolation of an antibacterial stilbene from Combretum woodii (Combretaceae) leaves," African Journal of Biotechnology, vol. 4 no. 10, pp. 1167-1171, 2005.
[136] P. Masoko, J. N. Eloff, "Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activites," African Journal of Traditional, Complementary and Alternative Medicines, vol. 4 no. 2, pp. 231-239, 2007.
[137] V. K. Zishiri, Potentising and application of a Combretum woodii leaf extract with high antibacterial and antioxidant activity, 2005.
[138] J. E. Angeh, X. Huang, I. Sattler, G. E. Swan, H. Dahse, A. Härtl, J. N. Eloff, "Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretum imberbe (Combretaceae)," Journal of Ethnopharmacology, vol. 110 no. 1, pp. 56-60, DOI: 10.1016/j.jep.2006.09.002, 2007.
[139] N. Bouchet, L. Barrier, B. Fauconneau, "Radical scavenging activity and antioxidant properties of tannins from Guiera senegalensisi (Combretaceae)," Phytotherapy Research, vol. 12 no. 3, pp. 159-162, DOI: 10.1002/(SICI)1099-1573(199805)12:3<159::AID-PTR209>3.0.CO;2-C, 1998.
[140] S. Amos, E. Kolawole, P. Akah, C. Wambebe, K. Gamaniel, "Behavioral effects of the aqueous extract of Guiera senegalensis in mice and rats," Phytomedicine, vol. 8 no. 5, pp. 356-361, DOI: 10.1078/0944-7113-00056, 2001.
[141] R. Ficarra, P. Ficarra, S. Tommasini, M. Carulli, S. Melardi, M. R. Di Bella, M. L. Calabrò, R. De Pasquale, M. P. Germanò, R. Sanogo, F. Casuscelli, "Isolation and characterization of Guiera senegalensis J.F.Gmel. active principles," Bollettino Chimico Farmaceutico, vol. 136 no. 5, pp. 454-459, 1997.
[142] Ž. Maleš, M. Medić-Šarić, F. Bucar, "Flavonoids of Guiera senegalensis J. F. GMEL. -Thin-layer Chromatography and Numerical Methods," Croatica Chemica Acta, vol. 71 no. 1, pp. 69-79, 1998.
[143] P. A. E. D. Sombié, A. Hilou, C. Mounier, A. Y. Coulibaly, M. Kiendrebeogo, J. F. Millogo, O. G. Nacoulma, "Antioxidant and anti-inflammatory activities from galls of guiera senegalensis J.F. Gmel (Combretaceae)," Research Journal of Medicinal Plant, vol. 5 no. 4, pp. 448-461, DOI: 10.3923/rjmp.2011.448.461, 2011.
[144] I. M. S. Eldeen, E. E. Elgorashi, D. A. Mulholland, J. Van Staden, "Anolignan B: A bioactive compound from the roots of Terminalia sericea," Journal of Ethnopharmacology, vol. 103 no. 1, pp. 135-138, DOI: 10.1016/j.jep.2005.09.005, 2006.
[145] J. Ezea, T. Iwuji, M. Oguike, "Growth responses of pregnant rabbits and their litters fed Spreading day flower (Commelina diffusa Burm. F.) and rock fig (Ficus ingens Miquel) leaves," Journal of Global Biosciences, vol. 3 no. 2, pp. 619-625, 2014.
[146] P. A. Akah, A. I. Nwambie, "Evaluation of Nigerian traditional medicines: 1. Plants used for rheumatic (inflammatory) disorders," Journal of Ethnopharmacology, vol. 42 no. 3, pp. 179-182, DOI: 10.1016/0378-8741(94)90083-3, 1994.
[147] E. Boakye-Gyasi, G. K. Ainooson, W. K. Abotsi, "Anti-inflammatory, antipyretic and antioxidant properties of a hydroalcoholic leaf extract of Palisota hirsuta K. Schum. (Commelinaceae)," West African Journal of Pharmacy, vol. 22 no. 1, 2011.
[148] J. A. O. Ojewole, "Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract," Journal of Ethnopharmacology, vol. 99 no. 1, pp. 13-19, DOI: 10.1016/j.jep.2005.01.025, 2005.
[149] S. J. N. Tatsimo, J. D. D. Tamokou, L. Havyarimana, D. Csupor, P. Forgo, J. Hohmann, J.-R. Kuiate, P. Tane, "Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum," BMC Research Notes, vol. 5, article 158,DOI: 10.1186/1756-0500-5-158, 2012.
[150] S. I. Alqasoumi, M. S. Abdel-Kader, "Terpenoids from Juniperus procera with hepatoprotective activity," Pakistan Journal of Pharmaceutical Sciences, vol. 25 no. 2, pp. 315-322, 2012.
[151] N. Orhan, I. E. Orhan, F. Ergun, "Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species," Food and Chemical Toxicology, vol. 49 no. 9, pp. 2305-2312, DOI: 10.1016/j.fct.2011.06.031, 2011.
[152] M. Araghiniknam, S. Chung, T. Nelson-White, C. Eskelson, R. R. Watson, "Antioxidant activity of disoscorea and dehydroepiandrosterone (DHEA) in older humans," Life Sciences, vol. 59 no. 11, pp. PL147-PL157, DOI: 10.1016/0024-3205(96)00396-7, 1996.
[153] M. M. Iwu, C. O. Okunji, G. O. Ohiaeri, P. Akah, D. Corley, M. S. Tempesta, "Hypoglycaemic activity of dioscoretine from tubers of Dioscorea dumetorum in normal and alloxan diabetic rabbits," Planta Medica, vol. 56 no. 3, pp. 264-267, DOI: 10.1055/s-2006-960952, 1990.
[154] M. A. Sonibare, R. B. Abegunde, "In vitro antimicrobial and antioxidant analysis of Dioscorea dumetorum (Kunth) Pax and Dioscorea hirtiflora (Linn.) and their bioactive metabolites from Nigeria," Journal of Applied Biosciences, vol. 51, pp. 3583-3590, 2012.
[155] D. H. Paper, E. Karall, M. Kremser, L. Krenn, "Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HEX-CAM assay," Phytotherapy Research, vol. 19 no. 4, pp. 323-326, DOI: 10.1002/ptr.1666, 2005.
[156] P. A. Egan, F. Van Der Kooy, "Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae) - Future perspectives and ethnopharmacological relevance," Chemistry & Biodiversity, vol. 10 no. 10, pp. 1774-1790, DOI: 10.1002/cbdv.201200359, 2013.
[157] M. T. Giardi, G. Rea, B. Berra, Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors, 2011.
[158] E. O. Farombi, O. O. Ogundipe, E. S. Uhunwangho, M. A. Adeyanju, J. O. Moody, "Antioxidant properties of extracts from Alchornea laxiflora (Benth) Pax and Hoffman," Phytotherapy Research, vol. 17 no. 7, pp. 713-716, DOI: 10.1002/ptr.1050, 2003.
[159] O. O. Ogundipe, J. O. Moody, P. J. Houghton, H. A. Odelola, "Bioactive chemical constituents from Alchornea laxiflora (benth) pax and hoffman," Journal of Ethnopharmacology, vol. 74 no. 3, pp. 275-280, DOI: 10.1016/s0378-8741(00)00352-4, 2001.
[160] R. N. Okigbo, C. L. Anuagasi, J. E. Amadi, "Advances in selected medicinal and aromatic plants indigenous to Africa," Journal of Medicinal Plants Research, vol. 3 no. 2, pp. 86-95, 2009.
[161] G. K. Oloyede, P. A. Onocha, J. Soyinka, O. Oguntokun, E. Thonda, "Phytochemical screening, antimicrobial and antioxidant activities of four Nigerian medicinal plants," Annals of Biological Research, vol. 1 no. 2, pp. 114-120, 2010.
[162] A. Adetutu, W. A. Morgan, O. Corcoran, "Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria," Journal of Ethnopharmacology, vol. 133 no. 1, pp. 116-119, DOI: 10.1016/j.jep.2010.09.011, 2011.
[163] B. Bakoma, B. Berké, K. Eklu-Gadegbeku, A. Diallo, A. Agbonon, K. Aklikokou, M. Gbeassor, N. Moore, "Total phenolic content, antioxidant activity and In vitro inhibitory potential against key enzymes relevant for hyperglycemia of Bridelia ferruginea extracts," Research Journal of Phytochemistry, vol. 6 no. 4, pp. 120-126, DOI: 10.3923/rjphyto.2012.120.126, 2012.
[164] T. De Bruyne, K. Cimanga, L. Pieters, M. Claeys, R. Dommisse, A. Vlietinck, "Gallocatechin - (4'→O→7) - epigallocatechin, a new biflavonoid isolated from Bridelia ferruginea," Natural Product Research (Formerly Natural Product Letters), vol. 11 no. 1, pp. 47-52, 1998.
[165] K. Cimanga, T. de Bruyne, S. Apers, L. Pieters, J. Totté, K. Kambu, L. Tona, P. Bakana, L. Q. Van Ufford, C. Beukelman, R. Labadie, A. J. Vlietinck, "Complement-inhibiting constituents of Bridelia ferruginea stem bark," Planta Medica, vol. 65 no. 3, pp. 213-217, DOI: 10.1055/s-1999-14059, 1999.
[166] O. A. Fabiyi, A. Olubunmi, O. S. Adeyemi, G. A. Olatunji, "Antioxidant and Cytotoxicity of β -Amyrin acetate fraction from Bridelia ferruginea leaves," Asian Pacific Journal of Tropical Biomedicine, vol. 2 no. 2, pp. S981-S984, DOI: 10.1016/s2221-1691(12)60347-5, 2012.
[167] E. O. Farombi, O. Ogundipe, J. O. Moody, "Antioxidant and anti-inflammatory activities of Mallotus oppositifolium in model systems.," African Journal of Medicine and Medical Sciences, vol. 30 no. 3, pp. 213-215, 2001.
[168] J. C. Chukwujekwu, J. Van Staden, P. Smith, "Antibacterial, anti-inflammatory and antimalarial activities of some Nigerian medicinal plants," South African Journal of Botany, vol. 71 no. 3-4, pp. 316-325, DOI: 10.1016/S0254-6299(15)30105-8, 2005.
[169] V. Barku, Y. Opoku-Boahen, E. Owusu-Ansah, N. Dayie, F. Mensah, "In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts of six wound healing medicinal plants," In-Vitro, vol. 3 no. 1, 2013.
[170] E. O. Farombi, "African indigenous plants with chemotherapeutic potentials and biotechnological approach to the production of bioactive prophylactic agents," African Journal of Biotechnology, vol. 2 no. 12, pp. 662-671, 2003.
[171] R. Kamgang, E. Vidal Pouokam Kamgne, M. C. Fonkoua, V. Penlap N Beng, M. Biwolé Sida, "Activities of aqueous extracts of Mallotus oppositifolium on Shigella dysenteriae A1-induced diarrhoea in rats," Clinical and Experimental Pharmacology and Physiology, vol. 33 no. 1-2, pp. 89-94, DOI: 10.1111/j.1440-1681.2006.04329.x, 2006.
[172] C. O. Nwaehujor, M. I. Ezeja, N. E. Udeh, D. N. Okoye, R. I. Udegbunam, "Anti-inflammatory and anti-oxidant activities of Mallotus oppositifolius (Geisel) methanol leaf extracts," Arabian Journal of Chemistry, vol. 7 no. 5, pp. 805-810, DOI: 10.1016/j.arabjc.2012.03.014, 2014.
[173] P. W. Sinjman, E. Joubert, D. Ferreira, X.-C. Li, Y. Ding, I. R. Green, W. C. A. Gelderblom, "Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and Trolox," Journal of Agricultural and Food Chemistry, vol. 57 no. 15, pp. 6678-6684, DOI: 10.1021/jf901417k, 2009.
[174] R. Johnson, D. D. Beer, P. V. Dludla, D. Ferreira, C. J. F. Muller, E. Joubert, "Aspalathin from Rooibos ( Aspalathus linearis ): A Bioactive C -glucosyl Dihydrochalcone with Potential to Target the Metabolic Syndrome," Planta Medica, 2018.
[175] E. Mathisen, D. Diallo, Ø. M. Andersen, K. E. Malterud, "Antioxidants from the bark of Burkea africana, an African medicinal plant," Phytotherapy Research, vol. 16 no. 2, pp. 148-153, DOI: 10.1002/ptr.936, 2002.
[176] R. Dave, "In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview," African Journal of Microbiology Research, vol. 3 no. 13, pp. 981-996, 2009.
[177] F. Stoddard, "Novel feed and non-food uses of legumes," Legume Futures Report, vol. 1, 2013.
[178] E. Joubert, E. S. Richards, J. D. Van Der Merwe, D. De Beer, M. Manley, W. C. A. Gelderblom, "Effect of species variation and processing on phenolic composition and in vitro antioxidant activity of aqueous extracts of cyclopia spp. (Honeybush tea)," Journal of Agricultural and Food Chemistry, vol. 56 no. 3, pp. 954-963, DOI: 10.1021/jf072904a, 2008.
[179] B. I. Kamara, D. J. Brand, E. V. Brandt, E. Joubert, "Phenolic metabolites from honeybush tea (Cyclopia subternata)," Journal of Agricultural and Food Chemistry, vol. 52 no. 17, pp. 5391-5395, DOI: 10.1021/jf040097z, 2004.
[180] B. I. Kamara, E. V. Brandt, D. Ferreira, E. Joubert, "Polyphenols from honeybush tea (Cyclopia intermedia)," Journal of Agricultural and Food Chemistry, vol. 51 no. 13, pp. 3874-3879, DOI: 10.1021/jf0210730, 2003.
[181] D. L. McKay, J. B. Blumberg, "A review of the bioactivity of South African herbal teas: Rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia)," Phytotherapy Research, vol. 21 no. 1,DOI: 10.1002/ptr.1992, 2007.
[182] M. D. Awouafack, P. Tane, J. N. Eloff, "Two new antioxidant flavones from the twigs of Eriosema robustum (Fabaceae)," Phytochemistry Letters, vol. 6 no. 1, pp. 62-66, DOI: 10.1016/j.phytol.2012.10.017, 2013.
[183] A. Yenesew, S. Derese, B. Irungu, J. O. Midiwo, N. C. Waters, P. Liyala, H. Akala, M. Heydenreich, M. G. Peter, "Flavonoids and isoflavonoids with antiplasmodial activities from the root bark of Erythrina abyssinica," Planta Medica, vol. 69 no. 7, pp. 658-661, DOI: 10.1055/s-2003-41119, 2003.
[184] M. Chacha, G. Bojase-Moleta, R. R. T. Majinda, "Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima," Phytochemistry, vol. 66 no. 1, pp. 99-104, DOI: 10.1016/j.phytochem.2004.10.013, 2005.
[185] C. C. W. Wanjala, B. F. Juma, G. Bojase, B. A. Gashe, R. R. T. Majinda, "Erythrinaline alkaloids and antimicrobial flavonoids from Erythrina latissima," Planta Medica, vol. 68 no. 7, pp. 640-642, DOI: 10.1055/s-2002-32891, 2002.
[186] C. C. W. Wanjala, R. R. T. Majinda, "Isoflavone glycosides from the root wood of Erythrina latissima," Journal of AOAC International, vol. 84 no. 2, pp. 451-453, 2001.
[187] K. G. Dufall, B. T. Ngadjui, K. F. Simeon, B. M. Abegaz, K. D. Croft, "Antioxidant activity of prenylated flavonoids from the West African medicinal plant Dorstenia mannii," Journal of Ethnopharmacology, vol. 87 no. 1, pp. 67-72, DOI: 10.1016/S0378-8741(03)00108-9, 2003.
[188] V. Steenkamp, H. Grimmer, M. Semano, M. Gulumian, "Antioxidant and genotoxic properties of South African herbal extracts," Mutation Research - Genetic Toxicology and Environmental Mutagenesis, vol. 581 no. 1-2, pp. 35-42, DOI: 10.1016/j.mrgentox.2004.10.009, 2005.
[189] S. El-Masry, M. E. Amer, M. S. Abdel-Kader, H. H. Zaatout, "Prenylated flavonoids of Erythrina lysistemon grown in Egypt," Phytochemistry, vol. 60 no. 8, pp. 783-787, DOI: 10.1016/S0031-9422(02)00202-9, 2002.
[190] U. Mabona, S. F. Van Vuuren, "Southern African medicinal plants used to treat skin diseases," South African Journal of Botany, vol. 87, pp. 175-193, DOI: 10.1016/j.sajb.2013.04.002, 2013.
[191] K. Asres, S. Gibbons, V. Nachname, "Anti-inflammatory activity of extracts and a saponin isolated from Melilotus elegans," Die Pharmazie-An International Journal of Pharmaceutical Sciences, vol. 60 no. 4, pp. 310-312, 2005.
[192] S. Chorepsima, K. Tentolouris, D. Dimitroulis, N. Tentolouris, "Melilotus: Contribution to wound healing in the diabetic foot," Journal of Herbal Medicine, vol. 3 no. 3, pp. 81-86, DOI: 10.1016/j.hermed.2013.04.005, 2013.
[193] T. Gebre-Mariam, K. Asres, M. Getie, A. Endale, R. Neubert, P. C. Schmidt, "In vitro availability of kaempferol glycosides from cream formulations of methanolic extract of the leaves of Melilotus elegans," European Journal of Pharmaceutics and Biopharmaceutics, vol. 60 no. 1, pp. 31-38, DOI: 10.1016/j.ejpb.2005.01.001, 2005.
[194] T. Gebre-Mariam, R. Neubert, P. C. Schmidt, P. Wutzler, M. Schmidtke, "Antiviral activities of some Ethiopian medicinal plants used for the treatment of dermatological disorders," Journal of Ethnopharmacology, vol. 104 no. 1-2, pp. 182-187, DOI: 10.1016/j.jep.2005.08.071, 2006.
[195] E. Yankep, D. Njamen, M. T. Fotsing, Z. T. Fomum, J.-C. Mbanya, R. M. Giner, M. C. Recio, S. Máñez, J. L. Ríos, "Griffonianone D, an isoflavone with anti-inflammatory activity from the root bark of Millettia griffoniana," Journal of Natural Products, vol. 66 no. 9, pp. 1288-1290, DOI: 10.1021/np0205912, 2003.
[196] S. Combes, J.-P. Finet, D. Siri, "On the optical activity of the 3-aryl-4-hydroxycoumarin isolated from Millettia griffoniana: Molecular modelling and total synthesis," Journal of the Chemical Society, Perkin Transactions 1, vol. 2 no. 1, pp. 38-44, 2002.
[197] D. Ngamga, E. Yankep, P. Tane, M. Bezabih, B. T. Ngadjui, Z. T. Fomum, B. M. Abegaz, "Antiparasitic prenylated isoflavonoids from seeds of Millettia griffoniana," Bulletin of the Chemical Society of Ethiopia, vol. 19 no. 1, pp. 75-80, 2005.
[198] D. Ngamga, E. Yankep, P. Tane, M. Bezabih, B. T. Ngadjui, Z. T. Fomum, B. M. Abegaz, "Isoflavonoids from seeds of Millettia griffoniana (Bail), 15," Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences, vol. 60 no. 9, pp. 973-977, DOI: 10.1515/znb-2005-0911, 2005.
[199] E. Yankep, Z. T. Fomum, D. Bisrat, E. Dagne, V. Hellwig, W. Steglich, "O-geranylated isoflavones and a 3-phenylcoumarin from Millettia griffoniana," Phytochemistry, vol. 49 no. 8, pp. 2521-2523, DOI: 10.1016/S0031-9422(98)00392-6, 1998.
[200] E. Yankep, Z. T. Fomum, E. Dagne, "An O-geranylated isoflavone from Millettia griffoniana," Phytochemistry, vol. 46 no. 3, pp. 591-593, DOI: 10.1016/S0031-9422(97)00326-9, 1997.
[201] E. Yankep, J. T. Mbafor, Z. T. Fomum, C. Steinbeck, B. B. Messanga, B. Nyasse, H. Budzikiewicz, C. Lenz, H. Schmickler, "Further isoflavonoid metabolites from Millettia griffoniana (Bail)," Phytochemistry, vol. 56 no. 4, pp. 363-368, DOI: 10.1016/S0031-9422(00)00400-3, 2001.
[202] S. Zingue, D. Njamen, J. Tchoumtchoua, M. Halabalaki, E. Simpson, C. Clyne, C. B. Magne Nde, "Effects of Millettia macrophylla (Fabaceae) extracts on estrogen target organs of female Wistar rat," Journal of Pharmacological Sciences, vol. 123 no. 2, pp. 120-131, DOI: 10.1254/jphs.13094fp, 2013.
[203] R. A. Sharma, A. J. Gescher, W. P. Steward, "Curcumin: the story so far," European Journal of Cancer, vol. 41 no. 13, pp. 1955-1968, DOI: 10.1016/j.ejca.2005.05.009, 2005.
[204] D. A. Alabi, O. R. Akinsulire, M. A. Sanyaolu, "Qualitative determination of chemical and nutritional composition of Parkia biglobosa (Jacq.) Benth," African Journal of Biotechnology, vol. 4 no. 8, pp. 812-815, 2005.
[205] B. M. Abegaz, B. T. Ngadjui, E. Dongo, M.-T. Bezabih, "Chemistry of the genus Dorstenia," Current Organic Chemistry, vol. 4 no. 10, pp. 1079-1090, DOI: 10.2174/1385272003375905, 2000.
[206] B. T. Ngadjui, E. Dongo, E. N. Happi, M.-T. Bezabih, B. M. Abegaz, "Prenylated flavones and phenylpropanoid derivatives from roots of Dorstenia psilurus," Phytochemistry, vol. 48 no. 4, pp. 733-737, DOI: 10.1016/s0031-9422(98)00017-x, 1998.
[207] B. T. Ngadjui, G. W. F. Kapche, H. Tamboue, B. M. Abegaz, J. D. Connolly, "Prenylated flavonoids and a dihydro-4-phenylcoumarin from Dorstenia poinsettifolia," Phytochemistry, vol. 51 no. 1, pp. 119-123, DOI: 10.1016/S0031-9422(98)00621-9, 1999.
[208] C. L. Miranda, J. F. Stevens, V. Ivanov, M. McCall, B. Frei, M. L. Deinzer, D. R. Buhler, "Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro," Journal of Agricultural and Food Chemistry, vol. 48 no. 9, pp. 3876-3884, DOI: 10.1021/jf0002995, 2000.
[209] G. O. Adegoke, M. Vijay Kumar, K. Sambaiah, B. R. Lokesh, "Inhibitory effect of Garcinia kola on lipid peroxidation in rat liver homogenate," Indian Journal of Experimental Biology (IJEB), vol. 36 no. 9, pp. 907-910, 1998.
[210] A. O. Aremu, O. A. Fawole, J. C. Chukwujekwu, M. E. Light, J. F. Finnie, J. Van Staden, "In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidea sericea," Journal of Ethnopharmacology, vol. 131 no. 1, pp. 22-27, DOI: 10.1016/j.jep.2010.05.043, 2010.
[211] A. O. Aremu, S. O. Amoo, A. R. Ndhlala, J. F. Finnie, J. Van Staden, "Antioxidant activity, acetylcholinesterase inhibition, iridoid content and mutagenic evaluation of Leucosidea sericea," Food and Chemical Toxicology, vol. 49 no. 5, pp. 1122-1128, DOI: 10.1016/j.fct.2011.02.003, 2011.
[212] S. O. Amoo, J. F. Finnie, J. Van Staden, "In vitro pharmacological evaluation of three Barleria species," Journal of Ethnopharmacology, vol. 121 no. 2, pp. 274-277, DOI: 10.1016/j.jep.2008.10.035, 2009.
[213] S. O. Amoo, A. R. Ndhlala, J. F. Finnie, J. Van Staden, "Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species," South African Journal of Botany, vol. 77 no. 2, pp. 435-445, DOI: 10.1016/j.sajb.2010.11.002, 2011.
[214] D. Barron, A. Di Pietro, C. Dumontet, D. B. McIntosh, "Isoprenoid flavonoids are new leads in the modulation of chemoresistance," Phytochemistry Reviews, vol. 1 no. 3, pp. 325-332, DOI: 10.1023/A:1026099520073, 2002.
[215] M. G. L. Hertog, D. Kromhout, C. Aravanis, H. Blackburn, R. Buzina, F. Fidanza, S. Giampaoli, A. Jansen, A. Menotti, S. Nedeljkovic, M. Pekkarinen, B. S. Simic, H. Toshima, E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, "Flavonoid intake and long-term risk of coronary heart disease and cancer in the Seven Countries Study," JAMA Internal Medicine, vol. 155 no. 4, pp. 381-386, DOI: 10.1001/archinte.1995.00430040053006, 1995.
[216] E. Middleton, C. Kandaswami, T. C. Theoharides, "The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer," Pharmacological Reviews, vol. 52 no. 4, pp. 673-751, 2000.
[217] C. A. Williams, R. J. Grayer, "Anthocyanins and other flavonoids," Natural Product Reports, vol. 21 no. 4, pp. 539-573, DOI: 10.1039/b311404j, 2004.
[218] Y. Hanasaki, S. Ogawa, S. Fukui, "The correlation between active oxygens scavenging and antioxidative effects of flavonoids," Free Radical Biology & Medicine, vol. 16 no. 6, pp. 845-850, DOI: 10.1016/0891-5849(94)90202-x, 1994.
[219] G. Cao, E. Sofic, R. L. Prior, "Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships," Free Radical Biology & Medicine, vol. 22 no. 5, pp. 749-760, DOI: 10.1016/S0891-5849(96)00351-6, 1997.
[220] Z. Y. Chen, P. T. Chan, K. Y. Ho, K. P. Fung, J. Wang, "Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups," Chemistry and Physics of Lipids, vol. 79 no. 2, pp. 157-163, DOI: 10.1016/0009-3084(96)02523-6, 1996.
[221] N. Cotelle, J.-L. Bernier, J.-P. Catteau, J. Pommery, J.-C. Wallet, E. M. Gaydou, "Antioxidant properties of hydroxy-flavones," Free Radical Biology & Medicine, vol. 20 no. 1, pp. 35-43, DOI: 10.1016/0891-5849(95)02014-4, 1996.
[222] P. G. Pietta, "Flavonoids as antioxidants," Journal of Natural Products, vol. 63 no. 7, pp. 1035-1042, DOI: 10.1021/np9904509, 2000.
[223] C. A. Rice-Evans, N. J. Miller, G. Paganga, "Structure-antioxidant activity relationships of flavonoids and phenolic acids," Free Radical Biology & Medicine, vol. 20 no. 7, pp. 933-956, DOI: 10.1016/0891-5849(95)02227-9, 1996.
[224] A. García-Lafuente, E. Guillamón, A. Villares, M. A. Rostagno, J. A. Martínez, "Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease," Inflammation Research, vol. 58 no. 9, pp. 537-552, DOI: 10.1007/s00011-009-0037-3, 2009.
[225] B. F. Juma, A. Yenesew, J. O. Midiwo, P. G. Waterman, "Flavones and phenylpropenoids in the surface exudate of Psiadia punctulata," Phytochemistry, vol. 57 no. 4, pp. 571-574, DOI: 10.1016/S0031-9422(01)00147-9, 2001.
[226] B. T. Ngadjui, E. Dongo, B. M. Abegaz, S. Fotso, H. Tamboue, "Dinklagins A, B and C: Three prenylated flavonoids and other constituents from the twigs of Dorstenia dinklagei," Phytochemistry, vol. 61 no. 1, pp. 99-104, DOI: 10.1016/S0031-9422(02)00130-9, 2002.
[227] B. T. Ngadjui, E. Dongo, H. Tamboue, K. Fogue, B. M. Abegaz, "Prenylated flavanones from the twigs of Dorstenia mannii," Phytochemistry, vol. 50 no. 8, pp. 1401-1406, DOI: 10.1016/S0031-9422(98)00324-0, 1999.
[228] B. Reiersen, B. T. Kiremire, R. Byamukama, Ø. M. Andersen, "Anthocyanins acylated with gallic acid from chenille plant, Acalypha hispida," Phytochemistry, vol. 64 no. 4, pp. 867-871, DOI: 10.1016/S0031-9422(03)00494-1, 2003.
[229] M. Gordon, The mechanism of antioxidant action in vitro, 1990.
[230] I. Pinchuk, D. Lichtenberg, "The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments," Progress in Lipid Research, vol. 41 no. 4, pp. 279-314, DOI: 10.1016/S0163-7827(01)00026-1, 2002.
[231] N. Noguchi, A. Watanabe, H. Shi, "Diverse functions of antioxidants," Free Radical Research, vol. 33 no. 6, pp. 809-817, DOI: 10.1080/10715760000301331, 2000.
[232] H. Kim, J. Y. Moon, H. Kim, D.-S. Lee, M. Cho, H.-K. Choi, Y. S. Kim, A. Mosaddik, S. K. Cho, "Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel," Food Chemistry, vol. 121 no. 2, pp. 429-436, DOI: 10.1016/j.foodchem.2009.12.060, 2010.
[233] L. T. Ling, S.-A. Yap, A. K. Radhakrishnan, T. Subramaniam, H. M. Cheng, U. D. Palanisamy, "Standardised Mangifera indica extract is an ideal antioxidant," Food Chemistry, vol. 113 no. 4, pp. 1154-1159, DOI: 10.1016/j.foodchem.2008.09.004, 2009.
[234] A. Lamien-Meda, C. Lamien, M. Compaoré, R. Meda, M. Kiendrebeogo, B. Zeba, J. Millogo, O. Nacoulma, "Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso," Molecules, vol. 13 no. 3, pp. 581-594, DOI: 10.3390/molecules13030581, 2008.
[235] S. E. Bizimenyera, G. E. Swan, H. Chikoto, J. N. Eloff, "Rationale for using Peltophorum africanum (Fabaceae) extracts in veterinary medicine," Journal of the South African Veterinary Association, vol. 76 no. 2, pp. 54-58, 2005.
[236] N. Mongalo, "Peltophorum africanum Sond [Mosetlha]: A review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities," Journal of Medicinal Plants Research, vol. 7 no. 48, pp. 3484-3491, 2013.
[237] L. J. Shai, S. R. Magano, S. L. Lebelo, A. M. Mogale, "Inhibitory effects of five medicinal plants on rat alpha-glucosidase: comparison with their effects on yeast alpha-glucosidase," Journal of Medicinal Plants Research, vol. 5 no. 13, pp. 2863-2867, 2011.
[238] O. Mazimba, "Pharmacology and phytochemistry studies in Peltophorum africanum," Bulletin of Faculty of Pharmacy, Cairo University, vol. 52 no. 1, pp. 145-153, DOI: 10.1016/j.bfopcu.2014.01.001, 2014.
[239] J. C. Ibewuike, F. O. Ogungbamila, A. O. Ogundaini, I. N. Okeke, L. Bohlin, "Antiinflammatory and antibacterial activities of C-methylflavonols from piliostigma thonningii," Phytotherapy Research, vol. 11 no. 4, pp. 281-284, DOI: 10.1002/(SICI)1099-1573(199706)11:4<281::AID-PTR281>3.0.CO;2-9, 1997.
[240] M. Aderogba, E. Okoh, T. Adelanwa, O. AwolowoUniv, "Antioxidant properties of the Nigerian Piliostigma species," Journal of Biological Sciences, 2004.
[241] T. Ajiboye, A. Salau, M. Yakubu, A. Oladiji, M. Akanji, J. Okogun, "Aqueous extract of Securidaca longepedunculata root induce redox imbalance in male rat liver and kidney," Human & Experimental Toxicology, vol. 29 no. 8, pp. 679-688, DOI: 10.1177/0960327109357218, 2010.
[242] E. Bombardelli, A. Cristoni, A. Lolla, P. Morazzoni, G. Mustich, R. Pace, M. V. Piretti, "Chemical and biological characterisation of Piliostigma thonningii polyphenols," Fitoterapia, vol. 65 no. 6, pp. 493-501, 1994.
[243] J. C. Ibewuike, A. O. Ogundaini, F. O. Ogungbamila, M.-T. Martin, J.-F. Gallard, L. Bohlin, M. Païs, "Piliostigmin, a 2-phenoxychromone, and C-methylflavonol from Piliostigma thonningii," Phytochemistry, vol. 43 no. 3, pp. 687-690, DOI: 10.1016/0031-9422(96)00367-6, 1996.
[244] O. M. Ighodaro, S. O. Agunbiade, J. O. Omole, O. A. Kuti, "Evaluation of the chemical, nutritional, antimicrobial and antioxidant-vitamin profiles of Piliostigma thonningii leaves (Nigerian species)," Research Journal of Medicinal Plant, vol. 6 no. 7, pp. 537-543, DOI: 10.3923/rjmp.2012.537.543, 2012.
[245] F. O. Jimoh, A. T. Oladiji, "Preliminary Studies on Piliostigma thonningii seeds: Proximate analysis, mineral composition and phytochemical screening," African Journal of Biotechnology, vol. 4 no. 12, pp. 1439-1442, 2005.
[246] A. C. Fernandes, A. D. Cromarty, C. Albrecht, C. E. Jansen Van Rensburg, "The antioxidant potential of Sutherlandia frutescens," Journal of Ethnopharmacology, vol. 95 no. 1,DOI: 10.1016/j.jep.2004.05.024, 2004.
[247] J. Tai, S. Cheung, E. Chan, D. Hasman, "In vitro culture studies of Sutherlandia frutescens on human tumor cell lines," Journal of Ethnopharmacology, vol. 93 no. 1,DOI: 10.1016/j.jep.2004.02.028, 2004.
[248] B.-E. van Wyk, C. Albrecht, "A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae)," Journal of Ethnopharmacology, vol. 119 no. 3, pp. 620-629, DOI: 10.1016/j.jep.2008.08.003, 2008.
[249] S. Kaviarasan, G. H. Naik, R. Gangabhagirathi, C. V. Anuradha, K. I. Priyadarsini, "In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds," Food Chemistry, vol. 103 no. 1, pp. 31-37, DOI: 10.1016/j.foodchem.2006.05.064, 2007.
[250] A. Wojdyło, J. Oszmiański, R. Czemerys, "Antioxidant activity and phenolic compounds in 32 selected herbs," Food Chemistry, vol. 105 no. 3, pp. 940-949, DOI: 10.1016/j.foodchem.2007.04.038, 2007.
[251] H. C. C. Maduka, Z. S. C. Okoye, "The effect of Sacoglottis gabonensis stem bark extract, a Nigerian alcoholic beverage additive, on the natural antioxidant defences during 2,4-dinitrophenyl hydrazine-induced membrane peroxidation in vivo," Vascular Pharmacology, vol. 39 no. 1-2, pp. 21-31, DOI: 10.1016/S1537-1891(02)00281-1, 2002.
[252] H. C. C. Maduka, Z. S. C. Okoye, A. Eje, "The influence of Sacoglottis gabonensis stem bark extract and its isolate bergenin, Nigerian alcoholic beverage additives, on the metabolic and haematological side effects of 2,4-dinitrophenyl hydrazine-induced tissue damage," Vascular Pharmacology, vol. 39 no. 6, pp. 317-324, DOI: 10.1016/S1537-1891(03)00042-9, 2002.
[253] H. Maduka, Z. Okoye, "The Effect of Sacoglottis gabonensis and its Isolate Bergenin on Doxorubicin - Ferric Ions (Fe3+) - Induced Degradation of Deoxyribose," Journal of Medical Sciences(Faisalabad), vol. 1 no. 5, pp. 316-319, DOI: 10.3923/jms.2001.316.319, 2001.
[254] D. K. Patel, K. Patel, R. Kumar, M. Gadewar, V. Tahilyani, "Pharmacological and analytical aspects of bergenin: A concise report," Asian Pacific Journal of Tropical Disease, vol. 2 no. 2, pp. 163-167, DOI: 10.1016/S2222-1808(12)60037-1, 2012.
[255] V. D. P. Nair, A. Dairam, A. Agbonon, J. T. Arnason, B. C. Foster, I. Kanfer, "Investigation of the antioxidant activity of African potato (Hypoxis hemerocallidea)," Journal of Agricultural and Food Chemistry, vol. 55 no. 5, pp. 1707-1711, DOI: 10.1021/jf0619838, 2007.
[256] P. M. O. Owira, J. A. O. Ojewole, "'African potato' (Hypoxis hemerocallidea corm): A plant-medicine for modern and 21st century diseases of mankind? - A review," Phytotherapy Research, vol. 23 no. 2, pp. 147-152, DOI: 10.1002/ptr.2595, 2009.
[257] M. J. Van Der Merwe, K. Jenkins, E. Theron, B. J. Van Der Walt, "Interaction of the di-catechols rooperol and nordihydroguaiaretic acid with oxidative systems in the human blood: a structure-activity relationship," Biochemical Pharmacology, vol. 45 no. 2, pp. 303-311, DOI: 10.1016/0006-2952(93)90065-5, 1993.
[258] A. C. Akinmoladun, E. O. Ibukun, E. Afor, E. M. Obuotor, E. O. Farombi, "Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum," Scientific Research and Essays, vol. 2 no. 5, pp. 163-166, 2007.
[259] R. J. Grayer, G. C. Kite, M. Abou-Zaid, L. J. Archer, "The application of atmospheric pressure chemical ionisation liquid chromatography-mass spectrometry in the chemotaxonomic study of flavonoids: Characterisation of flavonoids from Ocimum gratissimum var. gratissimum," Phytochemical Analysis, vol. 11 no. 4, pp. 257-267, DOI: 10.1002/1099-1565(200007/08)11:4<257::AID-PCA521>3.0.CO;2-A, 2000.
[260] O. A. Odukoya, O. O. Ilori, M. O. Sofidiya, O. A. Aniunoh, B. M. Lawal, I. O. Tade, "Antioxidant activity of Nigerian dietary spices," Electronic Journal of Environmental, Agricultural and Food Chemistry, vol. 4, pp. 1086-1093, 2005.
[261] B. Prakash, R. Shukla, P. Singh, P. K. Mishra, N. K. Dubey, R. N. Kharwar, "Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices," Food Research International, vol. 44 no. 1, pp. 385-390, DOI: 10.1016/j.foodres.2010.10.002, 2011.
[262] R. F. Vieira, R. J. Grayer, A. Paton, J. E. Simon, "Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers," Biochemical Systematics and Ecology, vol. 29 no. 3, pp. 287-304, DOI: 10.1016/S0305-1978(00)00062-4, 2001.
[263] G. K. Jayaprakasha, P. S. Negi, B. S. Jena, L. J. M. Rao, "Antioxidant and antimutagenic activities of Cinnamomum zeylanicum fruit extracts," Journal of Food Composition and Analysis, vol. 20 no. 3-4, pp. 330-336, DOI: 10.1016/j.jfca.2006.07.006, 2007.
[264] A. K. Jäger, J. Van Staden, "Cyclooxygenase inhibitory activity of South African plants used against inflammation," Phytochemistry Reviews, vol. 4 no. 1, pp. 39-46, DOI: 10.1007/s11101-004-5570-7, 2005.
[265] M. Zabka, R. Pavela, L. Slezakova, "Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi," Industrial Crops and Products, vol. 30 no. 2, pp. 250-253, DOI: 10.1016/j.indcrop.2009.04.002, 2009.
[266] É. Palé, M. Kouda-Bonafos, M. Nacro, "Caractérisation et mesure des activités anti-radicalaires d'anthocyanes de plantes du Burkina Faso," Comptes Rendus Chimie, vol. 7 no. 10-11, pp. 973-980, DOI: 10.1016/j.crci.2003.12.019, 2004.
[267] E. O. Farombi, A. Fakoya, "Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of Hibiscus sabdariffa L," Molecular Nutrition & Food Research, vol. 49 no. 12, pp. 1120-1128, DOI: 10.1002/mnfr.200500084, 2005.
[268] E. Prenesti, S. Berto, P. G. Daniele, S. Toso, "Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers," Food Chemistry, vol. 100 no. 2, pp. 433-438, DOI: 10.1016/j.foodchem.2005.09.063, 2007.
[269] C.-J. Wang, J.-M. Wang, W.-L. Lin, C.-Y. Chu, F.-P. Chou, T.-H. Tseng, "Protective effect of Hibiscus anthocyanins against tert -butyl hydroperoxide-induced hepatic toxicity in rats," Food and Chemical Toxicology, vol. 38 no. 5, pp. 411-416, DOI: 10.1016/s0278-6915(00)00011-9, 2000.
[270] M. P. Germanò, V. D'Angelo, R. Sanogo, A. Morabito, S. Pergolizzi, R. De Pasquale, "Hepatoprotective activity of Trichilia roka on carbon tetrachloride-induced liver damage in rats," Journal of Pharmacy and Pharmacology, vol. 53 no. 11, pp. 1569-1574, DOI: 10.1211/0022357011777954, 2001.
[271] O. Nana, J. Momeni Nzangué, R. Tepongning, M. B. Ngassoum, J. Momeni Nzangué, "Phythochemical screening, antioxIdant and antiplasmodial activities of extracts from Trichilia roka and Sapium ellipticum," The Journal of Phytopharmacology, vol. 2, pp. 22-29, 2013.
[272] J. O. Moody, V. A. Robert, J. D. Connolly, P. J. Houghton, "Anti-inflammatory activities of the methanol extracts and an isolated furanoditerpene constituent of Sphenocentrum jollyanum Pierre (Menispermaceae)," Journal of Ethnopharmacology, vol. 104 no. 1-2, pp. 87-91, DOI: 10.1016/j.jep.2005.08.051, 2006.
[273] O. S. Olorunnisola, A. O. Akintola, A. J. Afolayan, "Hepatoprotective and antioxidant effect of Sphenocentrum jollyanum (Menispermaceae) stem bark extract against CCl4- induced oxidative stress in rats," African Journal of Pharmacy and Pharmacology, vol. 5 no. 9, pp. 1241-1246, DOI: 10.5897/AJPP11.387, 2011.
[274] O. S. Olorunnisola, A. J. Afolayan, "In vivo antioxidant and biochemical evaluation of Sphenocentrum jollyanum leaf extract in P. berghei infected mice," Pakistan Journal of Pharmaceutical Sciences, vol. 26 no. 3, pp. 445-450, 2013.
[275] S. I. Abdelwahab, W. S. Koko, M. M. E. Taha, S. Mohan, M. Achoui, M. A. Abdulla, M. R. Mustafa, S. Ahmad, M. I. Noordin, C. L. Yong, M. R. Sulaiman, R. Othman, A. A. Hassan, "In vitro and in vivo anti-inflammatory activities of columbin through the inhibition of cycloxygenase-2 and nitric oxide but not the suppression of NF- κ B translocation," European Journal of Pharmacology, vol. 678 no. 1–3, pp. 61-70, DOI: 10.1016/j.ejphar.2011.12.024, 2012.
[276] N. O. A. Omisore, C. O. Adewunmi, E. O. Iwalewa, B. T. Ngadjui, T. K. Adenowo, B. M. Abegaz, J. A. Ojewole, J. Watchueng, "Antitrichomonal and antioxidant activities of Dorstenia barteri and Dorstenia convexa," Brazilian Journal of Medical and Biological Research, vol. 38 no. 7, pp. 1087-1094, DOI: 10.1590/S0100-879X2005000700012, 2005.
[277] V. Kuete, B. Ngameni, A. T. Mbaveng, B. Ngadjui, J. J. M. Meyer, N. Lall, "Evaluation of flavonoids from Dorstenia barteri for their antimycobacterial, antigonorrheal and anti-reverse transcriptase activities," Acta Tropica, vol. 116 no. 1, pp. 100-104, DOI: 10.1016/j.actatropica.2010.06.005, 2010.
[278] B. T. Ngadjui, J. Watchueng, F. Keumedjio, B. Ngameni, I. K. Simo, B. M. Abegaz, "Prenylated chalcones, flavone and other constituents of the twigs of Dorstenia angusticornis and Dorstenia barteri var. subtriangularis," Phytochemistry, vol. 66 no. 6, pp. 687-692, DOI: 10.1016/j.phytochem.2004.10.016, 2005.
[279] B. Ngameni, B. T. Ngadjui, G. N. Folefoc, J. Watchueng, B. M. Abegaz, "Diprenylated chalcones and other constituents from the twigs of Dorstenia barteri var. subtriangularis," Phytochemistry, vol. 65 no. 4, pp. 427-432, DOI: 10.1016/j.phytochem.2003.10.021, 2004.
[280] N. O. A. Omisore, C. O. Adewunmi, E. O. Iwalewa, B. T. Ngadjui, J. Watchueng, B. M. Abegaz, J. A. O. Ojewole, "Antinociceptive and anti-inflammatory effects of Dorstenia barteri (Moraceae) leaf and twig extracts in mice," Journal of Ethnopharmacology, vol. 95 no. 1,DOI: 10.1016/j.jep.2004.05.022, 2004.
[281] A. Tsopmo, M. Tene, P. Kamnaing, J. F. Ayafor, O. Sterner, "A new Dieis-Alder-type adduct flavonoid from Dorstenia barteri," Journal of Natural Products, vol. 62 no. 10, pp. 1432-1434, DOI: 10.1021/np990109o, 1999.
[282] G. Kansci, E. Dongo, C. Genot, "2,2-Diphenyl-1-picrylhydrazyl (DPPH•) test demonstrates antiradical activity of Dorstenia psilurus and Dorstenia ciliata plant extracts," Molecular Nutrition & Food Research, vol. 47 no. 6, pp. 434-437, DOI: 10.1002/food.200390096, 2003.
[283] N. A. Al-Jaber, A. S. Awaad, J. E. Moses, "Review on some antioxidant plants growing in Arab world," Journal of Saudi Chemical Society, vol. 15 no. 4, pp. 293-307, DOI: 10.1016/j.jscs.2011.07.004, 2011.
[284] B. T. Ngadjui, B. Ngameni, E. Dongo, S. F. Kouam, B. M. Abegaz, "Prenylated and geranylated chalcones and flavones from the aerial parts of Dorstenia ciliata," Bulletin of the Chemical Society of Ethiopia, vol. 16 no. 2, pp. 157-163, 2002.
[285] A. T. Mbaveng, V. Kuete, B. Ngameni, V. P. Beng, B. T. Ngadjui, J. J. M. Meyer, N. Lall, "Antimicrobial activities of the methanol extract and compounds from the twigs of Dorstenia mannii (Moraceae)," BMC Complementary and Alternative Medicine, vol. 12 no. 1, 2012.
[286] B. T. Ngadjui, B. M. Abegaz, E. Dongo, H. Tamboue, F. Kouam, "Geranylated and prenylated flavonoids from the twigs of Dorstenia mannil," Phytochemistry, vol. 48 no. 2, pp. 349-354, DOI: 10.1016/S0031-9422(97)01120-5, 1998.
[287] B. T. Ngadjui, S. F. Kouam, E. Dongo, G. W. F. Kapche, B. M. Abegaz, "Prenylated flavonoids from the aerial parts of Dorstenia mannii," Phytochemistry, vol. 55 no. 8, pp. 915-919, DOI: 10.1016/S0031-9422(00)00215-6, 2000.
[288] V. Kuete, L. P. Sandjo, "Isobavachalcone: An overview," Chinese Journal of Integrative Medicine, vol. 18 no. 7, pp. 543-547, DOI: 10.1007/s11655-012-1142-7, 2012.
[289] A. Tsopmo, M. Tene, P. Kamnaing, D. Ngnokam, J. F. Ayafor, O. Sterner, "Geranylated flavonoids from Dorstenia poinsettifolia," Phytochemistry, vol. 48 no. 2, pp. 345-348, DOI: 10.1016/S0031-9422(97)01114-X, 1998.
[290] B. M. Abegaz, "Novel natural products from marketed plants of eastern and southern Africa," Pure and Applied Chemistry, vol. 71 no. 6, pp. 919-926, DOI: 10.1351/pac199971060919, 1999.
[291] C. Etoundi, D. Kuaté, J. Ngondi, J. Oben, "Anti-amylase, anti-lipase and antioxidant effects of aqueous extracts of some Cameroonian spices," Journal of Natural Products, vol. 3 no. 2010, pp. 165-171, 2010.
[292] B. T. Ngadjui, T. K. Tabopda, E. Dongo, G. W. F. Kapche, P. Sandor, B. M. Abegaz, "Dorsilurins C, D and E, three prenylated flavonoids from the roots of Dorstenia psilurus," Phytochemistry, vol. 52 no. 4, pp. 731-735, DOI: 10.1016/S0031-9422(99)00211-3, 1999.
[293] S. Toyokuni, T. Tanaka, W. Kawaguchi, N. R. Lai Fang, M. Ozeki, S. Akatsuka, H. Hiai, O. I. Aruoma, T. Bahorun, "Effects of the phenolic contents of Mauritian endemic plant extracts on promoter activities of antioxidant enzymes," Free Radical Research, vol. 37 no. 11, pp. 1215-1224, DOI: 10.1080/10715760310001598150, 2003.
[294] S. A. Angaji, S. F. Mousavi, E. Babapour, "Antioxidants: A few key points," Annals of Biological Research, vol. 3 no. 8, pp. 3968-3977, 2012.
[295] V. S. Neergheen, T. Bahorun, L.-S. Jen, O. I. Aruoma, "Bioefficacy of mauritian endemic medicinal plants: Assessment of their phenolic contents and antioxidant potential," Pharmaceutical Biology, vol. 45 no. 1,DOI: 10.1080/13880200601026242, 2007.
[296] D. Ramful, B. Aumjaud, V. S. Neergheen, M. A. Soobrattee, K. Googoolye, O. I. Aruoma, T. Bahorun, "Polyphenolic content and antioxidant activity of Eugenia pollicina leaf extract in vitro and in model emulsion systems," Food Research International, vol. 44 no. 5, pp. 1190-1196, DOI: 10.1016/j.foodres.2010.09.024, 2011.
[297] H. Barakat, "Composition, antioxidant, antibacterial activities and mode of action of clove (Syzygium aromaticum L.) buds essential oil," British Journal of Applied Science & Technology, vol. 4 no. 13, 2014.
[298] M. I. Nassar, A. H. Gaara, A. H. El-Ghorab, A. Farrag, H. Shen, E. Huq, T. J. Mabry, "Chemical constituents of clove (Syzygium aromaticum, Fam. Myrtaceae) and their antioxidant activity," Revista Latinoamericana de Química, vol. 35 no. 3, 2007.
[299] M. A. Abbasi, D. Shahwar, M. Wahab, M. F. Saddiqui, "Antibacterial and antioxidant activities of an ethnobotanically important plant Sauromatum venosum (Ait.) Schott. of District Kotli, Azad Jammu & Kashmir," Pakistan Journal of Botany, vol. 43 no. 1, pp. 579-585, 2011.
[300] O.-H. Lee, B.-Y. Lee, "Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract," Bioresource Technology, vol. 101 no. 10, pp. 3751-3754, DOI: 10.1016/j.biortech.2009.12.052, 2010.
[301] L. I. Somova, F. O. Shode, P. Ramnanan, A. Nadar, "Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea , subspecies africana leaves," Journal of Ethnopharmacology, vol. 84 no. 2-3, pp. 299-305, DOI: 10.1016/s0378-8741(02)00332-x, 2003.
[302] A. Betancor-Fernández, A. Pérez-Gálvez, H. Sies, W. Stahl, "Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil's claw root and garlic or salmon oil for antioxidant capacity," Journal of Pharmacy and Pharmacology, vol. 55 no. 7, pp. 981-986, DOI: 10.1211/0022357021468, 2003.
[303] I. M. Mahomed, J. A. O. Ojewole, "Analgesic, antiinflammatory and antidiabetic properties of Harpagophytum procumbens DC (Pedaliaceae) secondary root aqueous extract," Phytotherapy Research, vol. 18 no. 12, pp. 982-989, DOI: 10.1002/ptr.1593, 2004.
[304] J. J. Gagnier, S. Chrubasik, E. Manheimer, "Harpgophytum procumbens for osteoarthritis and low back pain: a systematic review," BMC Complementary and Alternative Medicine, vol. 4, article 13,DOI: 10.1186/1472-6882-4-13, 2004.
[305] H. Göbel, A. Heinze, M. Ingwersen, U. Niederberger, D. Gerber, "Effects of Harpagophytum procumbens LI 174 (devil's claw) on sensory, motor and vascular muscle reagibility in the treatment of unspecific back pain," Der Schmerz, vol. 15 no. 1, pp. 10-18, DOI: 10.1007/s004820170043, 2001.
[306] L. Grant, D. E. McBean, L. Fyfe, A. M. Warnock, "A review of the biological and potential therapeutic actions of Harpagophytum procumbens," Phytotherapy Research, vol. 21 no. 3, pp. 199-209, DOI: 10.1002/ptr.2029, 2007.
[307] T. H.-W. Huang, V. H. Tran, R. K. Duke, S. Tan, S. Chrubasik, B. D. Roufogalis, C. C. Duke, "Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF- κ B activation," Journal of Ethnopharmacology, vol. 104 no. 1-2, pp. 149-155, DOI: 10.1016/j.jep.2005.08.055, 2006.
[308] M. Kaszkin, K. F. Beck, E. Koch, C. Erdelmeier, S. Kusch, J. Pfeilschifter, D. Loew, D. Loew, "Downregulation of inos expression in rat mesangial cells by special extracts of Harpagophytum procumbens derives from harpagoside-dependent and independent effects," Phytomedicine, vol. 11 no. 7-8, pp. 585-595, DOI: 10.1016/j.phymed.2004.02.003, 2004.
[309] A. A. Elujoba, O. M. Odeleye, C. M. Ogunyemi, "Traditional Medical Development for medical and dental primary health care delivery system in Africa," African Journal of Traditional, Complementary and Alternative Medicines, vol. 2 no. 1, pp. 46-61, DOI: 10.4314/ajtcam.v2i1.31103, 2004.
[310] I. M. Mahomed, J. A. O. Ojewole, "Anticonvulsant activity of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract in mice," Brain Research Bulletin, vol. 69 no. 1, pp. 57-62, DOI: 10.1016/j.brainresbull.2005.10.010, 2006.
[311] I. M. Mahomed, J. A. O. Ojewole, "Oxytocin-like effect of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract on rat isolated uterus," African Journal of Traditional, Complementary and Alternative Medicines, vol. 3 no. 1, pp. 82-89, 2006.
[312] G. McGregor, B. Fiebich, A. Wartenberg, S. Brien, G. Lewith, T. Wegener, "Devil's claw ( Harpagophytum procumbens ): an anti-inflammatory herb with therapeutic potential," Phytochemistry Reviews, vol. 4 no. 1, pp. 47-53, DOI: 10.1007/s11101-004-2374-8, 2005.
[313] G. A. Agbor, J. E. Oben, J. Y. Ngogang, G. Xinxing, J. A. Vinson, "Antioxidant capacity of some herbs/spices from Cameroon: a comparative study of two methods," Journal of Agricultural and Food Chemistry, vol. 53 no. 17, pp. 6819-6824, DOI: 10.1021/jf050445c, 2005.
[314] G. A. Agbor, J. A. Vinson, J. E. Oben, J. Y. Ngogang, "In vitro antioxidant activity of three piper species," Journal of Herbal Pharmacotherapy, vol. 7 no. 2, pp. 49-64, DOI: 10.1300/J157v07n02_04, 2007.
[315] E. U. Isong, I. B. Essien, "Nutrient and antinutrient composition of three varieties of Piper species," Plant Foods for Human Nutrition, vol. 49 no. 2, pp. 133-137, DOI: 10.1007/BF01091970, 1996.
[316] K. S. Natarajan, M. Narasimhan, K. R. Shanmugasundaram, E. R. B. Shanmugasundaram, "Antioxidant activity of a salt-spice-herbal mixture against free radical induction," Journal of Ethnopharmacology, vol. 105 no. 1-2, pp. 76-83, DOI: 10.1016/j.jep.2005.09.043, 2006.
[317] H. S. Abdillahi, J. F. Finnie, J. Van Staden, "Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic contents of four Podocarpus species used in traditional medicine in South Africa," Journal of Ethnopharmacology, vol. 136 no. 3, pp. 496-503, DOI: 10.1016/j.jep.2010.07.019, 2011.
[318] N. Erkan, G. Ayranci, E. Ayranci, "Antioxidant activities of rosemary ( Rosmarinus Officinalis L.) extract, blackseed ( Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol," Food Chemistry, vol. 110 no. 1, pp. 76-82, DOI: 10.1016/j.foodchem.2008.01.058, 2008.
[319] I. Meral, Z. Yener, T. Kahraman, N. Mert, "Effect of Nigella sativa on Glucose Concentration, Lipid Peroxidation, Anti-Oxidant Defence System and Liver Damage in Experimentally-Induced Diabetic Rabbits," Journal of Veterinary Medicine Series A, vol. 48 no. 10, pp. 593-599, DOI: 10.1046/j.1439-0442.2001.00393.x, 2001.
[320] T. Bahorun, F. Trotin, J. Pommery, J. Vasseur, M. Pinkas, "Antioxidant activities of Crataegus monogyna extracts," Planta Medica, vol. 60 no. 4, pp. 323-328, DOI: 10.1055/s-2006-959493, 1994.
[321] T. Bahorun, E. Aumjaud, H. Ramphul, M. Rycha, A. Luximon-Ramma, F. Trotin, O. I. Aruoma, "Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts," Molecular Nutrition & Food Research, vol. 47 no. 3, pp. 191-198, DOI: 10.1002/food.200390045, 2003.
[322] T. Bahorun, B. Gressier, F. Trotin, C. Brunet, T. Dine, M. Luyckx, J. Vasseur, M. Cazin, J.-C. Cazin, M. Pinkas, S. Battez-Lebègue, "Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations," Arzneimittel-Forschung/Drug Research, vol. 46 no. 11, pp. 1086-1089, 1996.
[323] J. Bernatoniene, R. Masteikova, D. Majiene, A. Savickas, E. Kevelaitis, R. Bernatoniene, K. Dvořáčkovâ, G. Civinskiene, R. Lekas, K. Vitkevičius, R. Pečiura, "Free radical-scavenging activities of crataegus monogyna extracts," Medicina, vol. 44 no. 9, pp. 706-712, DOI: 10.3390/medicina44090091, 2008.
[324] J. Breza, O. Dzurny, A. Borowka, T. Hanus, R. Petrik, G. Blane, H. Chadha-Boreham, W. Autet, "Efficacy and acceptability of Tadenan® (Pygeum africanum extract) in the treatment of benign prostatic hyperplasia (BPH): A multicentre trial in central Europe," Current Medical Research and Opinion, vol. 14 no. 3, pp. 127-139, DOI: 10.1185/03007999809113352, 1998.
[325] A. Ishani, R. MacDonald, D. Nelson, I. Rutks, T. J. Wilt, "Pygeum africanum for the treatment of patients with benign prostatic hyperplasia: A systematic review and quantitative meta-analysis," American Journal of Medicine, vol. 109 no. 8, pp. 654-664, DOI: 10.1016/S0002-9343(00)00604-5, 2000.
[326] M. Paubert-Braquet, A. Cave, R. Hocquemiller, D. Delacroix, C. Dupont, N. Hedef, P. Borgeat, "Effect of Pygeum africanum extract on A23187-stimulated production of lipoxygenase metabolites from human polymorphonuclear cells," Journal of Lipid Mediators and Cell Signalling, vol. 9 no. 3, pp. 285-290, 1994.
[327] D. Wang, Y. Li, G. Hou, P. Wang, J. Zhang, V. Laudon, B. Shi, "Pygeum africanum: Effect on oxidative stress in early diabetes-induced bladder," International Urology and Nephrology, vol. 42 no. 2, pp. 401-408, DOI: 10.1007/s11255-009-9610-5, 2010.
[328] S. O. Adeola, T. A. Yahaya, B. Hafsatu, N. A. Chinwe, E. C. Maryjane, I. Sunday, N. M. Adanna, "Gastro-protective effect of crossopteryx febrifuga in wistar rats," African Journal of Traditional, Complementary and Alternative Medicines, vol. 8 no. 3, pp. 300-306, 2011.
[329] F. Occhiuto, R. Sanogo, M. P. Germano, A. Keita, V. D'Angelo, R. De Pasquale, "Effects of some Malian medicinal plants on the respiratory tract of guinea-pigs," Journal of Pharmacy and Pharmacology, vol. 51 no. 11, pp. 1299-1303, DOI: 10.1211/0022357991776877, 1999.
[330] F. A. Tomas-Barberan, K. Hostettmann, "A cytotoxic triterpenoid and flavonoids from Crossopteryx febrifuga," Planta Medica, vol. 54 no. 3, pp. 266-267, DOI: 10.1055/s-2006-962425, 1988.
[331] V. Steenkamp, M. C. Gouws, M. Gulumian, E. E. Elgorashi, J. Van Staden, "Studies on antibacterial, anti-inflammatory and antioxidant activity of herbal remedies used in the treatment of benign prostatic hyperplasia and prostatitis," Journal of Ethnopharmacology, vol. 103 no. 1, pp. 71-75, DOI: 10.1016/j.jep.2005.07.007, 2006.
[332] M. Lis-Balchin, S. Hart, E. Simpson, "Buchu (Agathosma betulina and A. crenulata, Rutaceae) essential oils: Their pharmacological action on guinea-pig ileum and antimicrobial activity on microorganisms," Journal of Pharmacy and Pharmacology, vol. 53 no. 4, pp. 579-582, DOI: 10.1211/0022357011775703, 2001.
[333] F. Chaaib, E. F. Queiroz, K. Ndjoko, D. Diallo, K. Hostettmann, "Antifungal and antioxidant compounds from the root bark of Fagara zanthoxyloides," Planta Medica, vol. 69 no. 4, pp. 316-320, DOI: 10.1055/s-2003-38877, 2003.
[334] O. Ngozi, O. Samson, S. K. Akindele, "In vitro biochemical investigations of the effects of Carica papaya and Fagara zanthoxyloides on antioxidant status and sickle erythrocytes," African Journal of Biochemistry Research, vol. 5 no. 8, pp. 226-236, 2011.
[335] W. M. Messmer, M. Tin‐wa, H. H. S. Fong, C. Bevelle, N. R. Farnsworth, D. J. Abraham, J. Trojánek, "Fagaronine, a new tumor inhibitor isolated from Fagara zanthoxyloides lam. (Rutaceae)," Journal of Pharmaceutical Sciences, vol. 61 no. 11, pp. 1858-1859, DOI: 10.1002/jps.2600611145, 1972.
[336] J. W. Ogwal-Okeng, C. Obua, W. W. W. Anokbonggo, "Acute toxicity effects of the methanolic extract of Fagara zanthoxyloides (Lam.) root-bark," African Health Sciences, vol. 3 no. 3, pp. 124-126, 2003.
[337] M. Getie, T. Gebre-Mariam, R. Rietz, C. Höhne, C. Huschka, M. Schmidtke, A. Abate, R. H. H. Neubert, "Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nervosus and Rumex abyssinicus," Fitoterapia, vol. 74 no. 1, pp. 139-143, DOI: 10.1016/S0367-326X(02)00315-5, 2003.
[338] M. Getie, T. Gebre-Mariam, R. Rietz, R. H. H. Neubert, "Evaluation of the release profiles of flavonoids from topical formulations of the crude extract of the leaves of Dodonea viscosa (Sapindaceae)," Die Pharmazie, vol. 57 no. 5, pp. 320-322, 2002.
[339] R. A. A. Mothana, S. A. A. Abdo, S. Hasson, F. M. N. Althawab, S. A. Z. Alaghbari, U. Lindequist, "Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some yemeni medicinal plants," Evidence-Based Complementary and Alternative Medicine, vol. 7 no. 3, pp. 323-330, DOI: 10.1093/ecam/nen004, 2010.
[340] A. Rojas, S. Cruz, H. Ponce-Monter, R. Mata, "Smooth muscle relaxing compounds from Dodonaea viscosa," Planta Medica, vol. 62 no. 2, pp. 154-159, DOI: 10.1055/s-2006-957840, 1996.
[341] L. S. Teffo, M. A. Aderogba, J. N. Eloff, "Antibacterial and antioxidant activities of four kaempferol methyl ethers isolated from Dodonaea viscosa Jacq. var. angustifolia leaf extracts," South African Journal of Botany, vol. 76 no. 1, pp. 25-29, DOI: 10.1016/j.sajb.2009.06.010, 2010.
[342] A. Opoku, M. Nethengwe, P. Dludla, K. Madida, A. Shonhai, P. Smith, M. Singh, "Larvicidal and antimalarial activity of some Zulu medicinal plants," Planta Medica, vol. 77 no. 12,DOI: 10.1055/s-0031-1282439, 2011.
[343] G. Beretta, R. M. Facino, "Recent advances in the assessment of the antioxidant capacity of pharmaceutical drugs: From in vitro to in vivo evidence," Analytical and Bioanalytical Chemistry, vol. 398 no. 1, pp. 67-75, DOI: 10.1007/s00216-010-3829-y, 2010.
[344] M. Carocho, I. C. F. R. Ferreira, "A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives," Food and Chemical Toxicology, vol. 51 no. 1, pp. 15-25, DOI: 10.1016/j.fct.2012.09.021, 2013.
[345] M. E. Kellett, P. Greenspan, R. B. Pegg, "Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line," Food Chemistry, vol. 244, pp. 359-363, DOI: 10.1016/j.foodchem.2017.10.035, 2018.
[346] K. M. Schaich, X. Tian, J. Xie, "Reprint of "Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays"," Journal of Functional Foods, vol. 18, pp. 782-796, DOI: 10.1016/j.jff.2015.05.024, 2015.
[347] E. Niki, "Assessment of antioxidant capacity in vitro and in vivo," Free Radical Biology & Medicine, vol. 49 no. 4, pp. 503-515, DOI: 10.1016/j.freeradbiomed.2010.04.016, 2010.
[348] L. T. Dalvi, D. C. Moreira, R. Andrade, J. Ginani, A. Alonso, M. Hermes-Lima, "Ellagic acid inhibits iron-mediated free radical formation," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 173, pp. 910-917, DOI: 10.1016/j.saa.2016.10.034, 2017.
[349] P. M. Hanna, R. P. Mason, "Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique," Archives of Biochemistry and Biophysics, vol. 295 no. 1, pp. 205-213, DOI: 10.1016/0003-9861(92)90507-S, 1992.
[350] M. Valko, K. Jomova, C. J. Rhodes, K. Kuča, K. Musílek, "Redox- and non-redox-metal-induced formation of free radicals and their role in human disease," Archives of Toxicology, vol. 90 no. 1,DOI: 10.1007/s00204-015-1579-5, 2016.
[351] M. Mohammadpour, M. Behjati, A. Sadeghi, A. Fassihi, "Wound healing by topical application of antioxidant iron chelators: Kojic acid and deferiprone," International Wound Journal, vol. 10 no. 3, pp. 260-264, DOI: 10.1111/j.1742-481X.2012.00971.x, 2013.
[352] I. A. Demyanenko, V. V. Zakharova, O. P. Ilyinskaya, T. V. Vasilieva, A. V. Fedorov, V. N. Manskikh, R. A. Zinovkin, O. Y. Pletjushkina, B. V. Chernyak, V. P. Skulachev, E. N. Popova, "Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice," Oxidative Medicine and Cellular Longevity, vol. 2017, 2017.
[353] X. Cao, Y. Wang, C. Wu, X. Li, Z. Fu, M. Yang, W. Bian, S. Wang, Y. Song, J. Tang, X. Yang, "Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing," Scientific Reports, vol. 8 no. 1,DOI: 10.1038/s41598-018-19486-9, 2018.
[354] V. Hosur, L. M. Burzenski, T. M. Stearns, M. L. Farley, J. P. Sundberg, M. V. Wiles, L. D. Shultz, "Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing," Experimental and Molecular Pathology, vol. 102 no. 2, pp. 337-346, DOI: 10.1016/j.yexmp.2017.03.003, 2017.
[355] D. Son, D. Yang, J. Sun, S. Kim, N. Kang, J. Kang, Y. Choi, J. Lee, S. Moh, D. Shin, K. Kim, "A Novel Peptide, Nicotinyl–Isoleucine–Valine–Histidine (NA–IVH), Promotes Antioxidant Gene Expression and Wound Healing in HaCaT Cells," Marine Drugs, vol. 16 no. 8,DOI: 10.3390/md16080262, 2018.
[356] J. Benedí, R. Arroyo, C. Romero, S. Martín-Aragón, A. M. Villar, "Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells," Life Sciences, vol. 75 no. 10, pp. 1263-1276, DOI: 10.1016/j.lfs.2004.05.001, 2004.
[357] D. Diallo, A. Marston, C. Terreaux, Y. Toure, B. S. Paulsen, K. Hostettmann, "Screening of malian medicinal plants for antifungal, larvicidal, molluscicidal, antioxidant and radical scavenging activities," Phytotherapy Research, vol. 15 no. 5, pp. 401-406, DOI: 10.1002/ptr.738, 2001.
[358] R. R. T. Majinda, P. Erasto, G. Bojase-Moleta, "Antimicrobial and antioxidant flavonoids from the root wood of Bolusanthus speciosus," Phytochemistry, vol. 65 no. 7, pp. 875-880, DOI: 10.1016/j.phytochem.2004.02.011, 2004.
[359] B. F. Juma, R. R. T. Majinda, "Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging properties," Phytochemistry, vol. 65 no. 10, pp. 1397-1404, DOI: 10.1016/j.phytochem.2004.04.029, 2004.
[360] G. P. P. Kamatou, A. M. Viljoen, A. B. Gono-Bwalya, R. L. Van Zyl, S. F. Van Vuuren, A. C. U. Lourens, K. H. C. Başer, B. Demirci, K. L. Lindsey, J. Van Staden, P. Steenkamp, "The in vitro pharmacological activities and a chemical investigation of three South African Salvia species," Journal of Ethnopharmacology, vol. 102 no. 3, pp. 382-390, DOI: 10.1016/j.jep.2005.06.034, 2005.
[361] D. R. Katerere, J. N. Eloff, "Variation in chemical composition, antibacterial and antioxidant activity of fresh and dried Acacia leaf extracts," South African Journal of Botany, vol. 70 no. 2, pp. 303-305, DOI: 10.1016/S0254-6299(15)30249-0, 2004.
[362] K. P. Latté, H. Kolodziej, "Antioxidant properties of phenolic compounds from Pelargonium reniforme," Journal of Agricultural and Food Chemistry, vol. 52 no. 15, pp. 4899-4902, DOI: 10.1021/jf0495688, 2004.
[363] C. S. Nergard, D. Diallo, K. Inngjerdingen, T. E. Michaelsen, T. Matsumoto, H. Kiyohara, H. Yamada, B. S. Paulsen, "Medicinal use of Cochlospermum tinctorium in Mali: Anti-ulcer-, radical scavenging- and immunomodulating activities of polymers in the aqueous extract of the roots," Journal of Ethnopharmacology, vol. 96 no. 1-2, pp. 255-269, DOI: 10.1016/j.jep.2004.09.018, 2005.
[364] A. R. Opoku, N. F. Maseko, S. E. Terblanche, "The in vitro antioxidative activity of some traditional Zulu medicinal plants," Phytotherapy Research, vol. 16 no. 1, pp. S51-S56, DOI: 10.1002/ptr.804, 2002.
[365] M. Burits, F. Bucar, "Antioxidant activity of Nigella sativa essential oil," Phytotherapy Research, vol. 14 no. 5, pp. 323-328, DOI: 10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q, 2000.
[366] M. A. Gyamfi, Y. Aniya, "Antioxidant properties of Thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea," Biochemical Pharmacology, vol. 63 no. 9, pp. 1725-1737, DOI: 10.1016/S0006-2952(02)00915-2, 2002.
[367] E. O. Farombi, I. A. Nwaokeafor, "Anti-oxidant mechanisms of kolaviron: Studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats," Clinical and Experimental Pharmacology and Physiology, vol. 32 no. 8, pp. 667-674, DOI: 10.1111/j.0305-1870.2005.04248.x, 2005.
[368] A. Luximon-Ramma, T. Bahorun, M. A. Soobrattee, O. I. Aruoma, "Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula," Journal of Agricultural and Food Chemistry, vol. 50 no. 18, pp. 5042-5047, DOI: 10.1021/jf0201172, 2002.
[369] S. Singh, V. Parasharami, S. Rai, "Medicinal uses of adansonia digitata L.: An endangered tree species," Journal of Pharmaceutical and Scientific Innovation, vol. 2 no. 3, pp. 14-16, DOI: 10.7897/2277-4572.02324, 2013.
[370] F. Bucar, M. Resch, R. Bauer, M. Burits, E. Knauder, M. Schubert-Zsilavecz, "5-methylflavasperone and rhamnetin from Guiera senegalensis and their antioxidative and 5-lipoxygenase inhibitory activity," Die Pharmazie, vol. 30 no. 13, 1999.
[371] F. Bucar, I. Schneider, H. Ögmundsdóttir, K. Ingólfsdóttir, "Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets," Phytomedicine, vol. 11 no. 7-8, pp. 602-606, DOI: 10.1016/j.phymed.2004.03.004, 2004.
[372] I. Schneider, F. Bucar, "Lipoxygenase inhibitors from natural plant sources, part 1: medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase/cyclooxygenase," Phytotherapy Research, vol. 19 no. 2, pp. 81-102, DOI: 10.1002/ptr.1603, 2005.
[373] A. A. Wube, B. Streit, S. Gibbons, K. Asres, F. Bucar, "In vitro 12(S)-HETE inhibitory activities of naphthoquinones isolated from the root bark of Euclea racemosa ssp. schimperi," Journal of Ethnopharmacology, vol. 102 no. 2, pp. 191-196, DOI: 10.1016/j.jep.2005.06.009, 2005.
[374] J. Lin, A. R. Opoku, M. Geheeb-Keller, A. D. Hutchings, S. E. Terblanche, A. K. Jäger, J. Van Staden, "Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities," Journal of Ethnopharmacology, vol. 68 no. 1-3, pp. 267-274, DOI: 10.1016/S0378-8741(99)00130-0, 1999.
[375] A. Hiermann, F. Bucar, "Influence of some traditional medicinal plants of senegal on prostaglandin biosynthesis," Journal of Ethnopharmacology, vol. 42 no. 2, pp. 111-116, DOI: 10.1016/0378-8741(94)90104-X, 1994.
[376] A. K. Jäger, A. Hutchings, J. Van Staden, "Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors," Journal of Ethnopharmacology, vol. 52 no. 2, pp. 95-100, DOI: 10.1016/0378-8741(96)01395-5, 1996.
[377] L. Krenn, G. Beyer, H. H. Pertz, E. Karall, M. Kremser, B. Galambosi, M. F. Melzig, "In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia," Arzneimittel-Forschung/Drug Research, vol. 54 no. 7, pp. 402-405, 2004.
[378] M. Vasänge, B. Liu, C. J. Welch, W. Rolfsen, L. Bohlin, "The flavonoid constituents of two Polypodium species (Calaguala) and their effect on the elastase release in human neutrophils," Planta Medica, vol. 63 no. 6, pp. 511-517, DOI: 10.1055/s-2006-957753, 1997.
[379] J. B. Calixto, M. F. Otuki, A. R. S. Santos, "Anti-inflammatory compounds of plant origin. part i. action on arachidonic acid pathway, nitric oxide and nuclear factor κ B (NF- κ B)," Planta Medica, vol. 69 no. 11, pp. 973-983, DOI: 10.1055/s-2003-45141, 2003.
[380] E. A. Ojo-Amaize, P. Kapahi, V. N. Kakkanaiah, T. Takahashi, T. Shalom-Barak, H. B. Cottam, A. A. Adesomoju, E. J. Nchekwube, O. A. Oyemade, M. Karin, J. I. Okogun, "Hypoestoxide, a novel anti-inflammatory natural diterpene, inhibits the activity of I κ B kinase," Cellular Immunology, vol. 209 no. 2, pp. 149-157, DOI: 10.1006/cimm.2001.1798, 2001.
[381] E. A. Ojo-Amaize, E. J. Nchekwube, H. B. Cottam, R. Bai, P. Verdier-Pinard, V. N. Kakkanaiah, J. A. Varner, L. Leoni, J. I. Okogun, A. A. Adesomoju, O. A. Oyemade, E. Hamel, "Hypoestoxide, a natural nonmutagenic diterpenoid with antiangiogenic and antitumor activity: Possible mechanisms of action," Cancer Research, vol. 62 no. 14, pp. 4007-4014, 2002.
[382] G. Chernishov, M. Arragie, A. Etana, "Preliminary pharmacological studies on Mettere (Glinus lotoides). II. Effects upon the cardiovascular and gastrointestinal system," Ethiopian Medical Journal, vol. 16 no. 3, pp. 105-110, 1978.
[383] A. E. Mengesha, Isolation, Structural Elucidation, Quantification and Formulation of the Saponins and Flavonoids of the Seeds of Glinus Lotoides, 2005.
[384] A. Endale, B. Kammerer, T. Gebre-Mariam, P. C. Schmidt, "Quantitative determination of the group of flavonoids and saponins from the extracts of the seeds of Glinus lotoides and tablet formulation thereof by high-performance liquid chromatography," Journal of Chromatography A, vol. 1083 no. 1-2, pp. 32-41, DOI: 10.1016/j.chroma.2005.05.095, 2005.
[385] A. Endale, P. C. Schmidt, T. Gebre-Mariam, "Standardisation and physicochemical characterisation of the extracts of seeds of Glinus lotoides," Die Pharmazie, vol. 59 no. 1, pp. 34-38, 2004.
[386] M. El-Sayed, "Phytochemical investigation of Glinus lotoides growing in Egypt," Egyptian journal of pharmaceutical sciences, vol. 38 no. 4-6, pp. 377-390, 1997.
[387] D. Diallo, B. Hveem, M. Ag Mahmoud, G. Berge, B. S. Paulsen, A. Maiga, "An ethnobotanical survey of herbal drugs of Gourma district, Mali," Pharmaceutical Biology, vol. 37 no. 1, pp. 80-91, DOI: 10.1076/phbi.37.1.80.6313, 1999.
[388] P. Sahakitpichan, W. Disadee, S. Ruchirawat, T. Kanchanapoom, "L-(-)-(N-trans-Cinnamoyl)-arginine, an Acylamino Acid from Glinus oppositifolius (L.) Aug. DC," Molecules, vol. 15 no. 9, pp. 6186-6192, DOI: 10.3390/molecules15096186, 2010.
[389] J. A. O. Ojewole, "Evaluation of the analgesic, anti-inflammatory and anti-diabetic properties of Sclerocarya birrea (A. Rich.) Hochst. stem-bark aqueous extract in mice and rats," Phytotherapy Research, vol. 18 no. 8, pp. 601-608, DOI: 10.1002/ptr.1503, 2004.
[390] E. Agbaje, A. Tijani, O. Braimoh, "Effects of Enantia chlorantha extracts in Laboratory-Induced Convulsion and Inflammation," Orient Journal of Medicine, vol. 15 no. 1, pp. 68-71, DOI: 10.4314/ojm.v15i1.29050, 2004.
[391] R. F. Atata, S. Alhassan, S. M. Ajewole, "Effect of stem bark extracts of Enantia chloranta on some clinical isolates," Biokemistri, vol. 15 no. 2, pp. 84-92, 2003.
[392] J. O. Moody, S. F. Bloomfield, P. J. Hylands, "In-vitro evaluation of the antimicrobial activities of Enantia chlorantha Oliv. extractives," African Journal of Medicine and Medical Sciences, vol. 24 no. 3, pp. 269-273, 1995.
[393] P. V. Tan, B. Nyasse, T. Dimo, P. Wafo, B. T. Akahkuh, "Synergistic and potentiating effects of ranitidine and two new anti-ulcer compounds from Enantia chlorantha and Voacanga africana in experimental animal models," Die Pharmazie, vol. 57 no. 6, pp. 409-412, 2002.
[394] A. M. Koffi, C. Kanko, H. Ramiarantsoa, G. Figueredo, J.-C. Chalchat, J.-M. Bessière, G. Koukoua, Y. T. N'Guessan, "Essentials oils phenolic and benzenic derivatives from three Uvaria (Annonaceae) of Ivory Coast: Uvaria chamae (P. Beauv), Uvaria afzelii (Sc. Elliot), and Uvaria sp. (Aké Assi)," Comptes Rendus Chimie, vol. 7 no. 10-11, pp. 997-1002, DOI: 10.1016/j.crci.2003.12.024, 2004.
[395] H. Ménan, J.-T. Banzouzi, A. Hocquette, Y. Pélissier, Y. Blache, M. Koné, M. Mallié, L. A. Assi, A. Valentin, "Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria," Journal of Ethnopharmacology, vol. 105 no. 1-2, pp. 131-136, DOI: 10.1016/j.jep.2005.10.027, 2006.
[396] R. I. Uchegbu, D. E. Okwu, "An Evaluation of the Phytochemical and Nutrient Composition of the Seeds and Stem bark of Detarium senegalense Gmelin," Journal of Natural Science Research, vol. 2 no. 5, pp. 107-111, 2012.
[397] D. Fall, C. Gleye, X. Franck, A. Laurens, R. Hocquemiller, "Cis-bullatencin, a linear acetogenin from roots of Uvaria chamae," Natural Product Research (Formerly Natural Product Letters), vol. 16 no. 5, pp. 315-321, DOI: 10.1080/10575630290026437, 2002.
[398] S. Philipov, N. Ivanovska, R. Istatkova, M. Velikova, P. Tuleva, "Phytochemical study and cytotoxic activity of alkaloids from Uvaria chamae P. Beauv.," Die Pharmazie, vol. 55 no. 9, pp. 688-689, 2000.
[399] M. Duwiejua, E. Woode, D. D. Obiri, "Pseudo-akuammigine, an alkaloid from Picralima nitida seeds, has anti-inflammatory and analgesic actions in rats," Journal of Ethnopharmacology, vol. 81 no. 1, pp. 73-79, DOI: 10.1016/S0378-8741(02)00058-2, 2002.
[400] I. C. Ezeamuzie, M. C. Ojinnaka, E. O. Uzogara, S. E. Oji, "Anti-inflammatory, antipyretic and anti-malarial activities of a West African medicinal plant--Picralima nitida.," African Journal of Medicine and Medical Sciences, vol. 23 no. 1, pp. 85-90, 1994.
[401] J. Betti, An ethnobotanical study of medicinal plants among the Baka pygmies in the Dja biosphere reserve, Cameroon,DOI: 10.9734/EJMP/2013/2550, 2004.
[402] T. O. Fakeye, O. A. Itiola, H. A. Odelola, "Evaluation of the antimicrobial property of the stem bark of Picralima nitida (Apocynaceae)," Phytotherapy Research, vol. 14 no. 5, pp. 368-370, DOI: 10.1002/1099-1573(200008)14:5<368::AID-PTR615>3.0.CO;2-X, 2000.
[403] S. Papajewski, B. Vogler, J. Conrad, I. Klaiber, G. Roos, C. U. Walter, R. Süßmuth, W. Kraus, "Isolation from Cussonia barteri of 1′-O-chlorogenoylchlorogenic acid and 1′-o-chlorogenoylneochlorogenic acid, a new type of quinic acid esters," Planta Medica, vol. 67 no. 8, pp. 732-736, DOI: 10.1055/s-2001-18338, 2001.
[404] S. Roy, R. Sehgal, B. M. Padhy, V. L. Kumar, "Antioxidant and protective effect of latex of Calotropis procera against alloxan-induced diabetes in rats," Journal of Ethnopharmacology, vol. 102 no. 3, pp. 470-473, DOI: 10.1016/j.jep.2005.06.026, 2005.
[405] N. H. Ugochukwu, N. E. Babady, "Antioxidant effects of Gongronema latifolium in hepatocytes of rat models of non-insulin dependent diabetes mellitus," Fitoterapia, vol. 73 no. 7-8, pp. 612-618, DOI: 10.1016/s0367-326x(02)00218-6, 2002.
[406] N. H. Ugochukwu, N. E. Babady, "Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin-induced diabetic rats," Life Sciences, vol. 73 no. 15, pp. 1925-1938, DOI: 10.1016/S0024-3205(03)00543-5, 2003.
[407] N. H. Ugochukwu, N. E. Babady, M. Cobourne, S. R. Gasset, "The effect of Gongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats," Journal of Biosciences, vol. 28 no. 1,DOI: 10.1007/BF02970124, 2003.
[408] R. H. Nébié, R. T. Yaméogo, A. Bélanger, F. S. Sib, "Composition chimique des huiles essentielles d'Ageratum conyzoïdes du Burkina Faso," Comptes Rendus Chimie, vol. 7 no. 10-11, pp. 1019-1022, DOI: 10.1016/j.crci.2003.12.027, 2004.
[409] A. Shirwaikar, P. M. Bhilegaonkar, S. Malini, J. Sharath Kumar, "The gastroprotective activity of the ethanol extract of Ageratum conyzoides," Journal of Ethnopharmacology, vol. 86 no. 1, pp. 117-121, DOI: 10.1016/S0378-8741(03)00050-3, 2003.
[410] C. Z. Liu, S. J. Murch, M. El-Demerdash, P. K. Saxena, "Artemisia judaica L.: Micropropagation and antioxidant activity," Journal of Biotechnology, vol. 110 no. 1, pp. 63-71, DOI: 10.1016/j.jbiotec.2004.01.011, 2004.
[411] A. Popat, N. H. Shear, I. Malkiewicz, M. J. Stewart, V. Steenkamp, S. Thomson, M. G. Neuman, "The toxicity of Callilepis laureola, a South African traditional herbal medicine," Clinical Biochemistry, vol. 34 no. 3, pp. 229-236, DOI: 10.1016/S0009-9120(01)00219-3, 2001.
[412] V. Steenkamp, M. J. Stewart, M. Zuckerman, "Detection of poisoning by impila (Callilepis laureola) in a mother and child," Human & Experimental Toxicology, vol. 18 no. 10, pp. 594-597, DOI: 10.1191/096032799678839428, 1999.
[413] J. O. Midiwo, A. Yenesew, B. F. Juma, S. Derese, J. A. Ayoo, A. O. Aluoch, S. Guchu, "Bioactive compounds from some kenyan ethnomedicinal plants: myrsinaceae, polygonaceae and psiadia punctulata," Phytochemistry Reviews, vol. 1 no. 3, pp. 311-323, DOI: 10.1023/a:1026029609500, 2002.
[414] C. S. Nergard, D. Diallo, T. E. Michaelsen, K. E. Malterud, H. Kiyohara, T. Matsumoto, H. Yamada, B. S. Paulsen, "Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch. Bip. ex Walp," Journal of Ethnopharmacology, vol. 91 no. 1, pp. 141-152, DOI: 10.1016/j.jep.2003.12.007, 2004.
[415] M. William Carey, N. V. Rao, B. R. Kumar, G. K. Mohan, "Anti-inflammatory and analgesic activities of methanolic extract of Kigelia pinnata DC flower," Journal of Ethnopharmacology, vol. 130 no. 1, pp. 179-182, DOI: 10.1016/j.jep.2010.04.023, 2010.
[416] Y. G. Gouda, A. M. Abdel-baky, F. M. Darwish, K. M. Mohamed, R. Kasai, K. Yamasaki, "Iridoids from Kigelia pinnata DC. fruits," Phytochemistry, vol. 63 no. 8, pp. 887-892, DOI: 10.1016/S0031-9422(03)00262-0, 2003.
[417] J. S. Reddy, P. R. Rao, M. S. Reddy, "Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats," Journal of Ethnopharmacology, vol. 79 no. 2, pp. 249-251, DOI: 10.1016/s0378-8741(01)00388-9, 2002.
[418] J. S. N. Souza, L. L. Machado, O. D. L. Pessoa, R. Braz-Filho, C. R. Overk, P. Yao, G. A. Cordell, T. L. G. Lemos, "Pyrrolizidine alkaloids from Heliotropium indicum," Journal of the Brazilian Chemical Society, vol. 16 no. 6 B, pp. 1410-1414, DOI: 10.1590/S0103-50532005000800019, 2005.
[419] A. Togola, D. Diallo, S. Dembélé, H. Barsett, B. S. Paulsen, "Ethnopharmacological survey of different uses of seven medicinal plants from Mali, (West Africa) in the regions Doila, Kolokani and Siby," Journal of Ethnobiology and Ethnomedicine, vol. 1, article 7,DOI: 10.1186/1746-4269-1-7, 2005.
[420] A. M. Emam, R. Elias, A. M. Moussa, R. Faure, L. Debrauwer, G. Balansard, "Two flavonoid triglycosides from Buddleja madagascariensis," Phytochemistry, vol. 48 no. 4, pp. 739-742, DOI: 10.1016/S0031-9422(97)01043-1, 1998.
[421] L. O. A. Manguro, I. Ugi, R. Hermann, P. Lemmen, "Flavonol and drimane-type sesquiterpene glycosides of Warburgia stuhlmannii leaves," Phytochemistry, vol. 63 no. 4, pp. 497-502, DOI: 10.1016/S0031-9422(03)00105-5, 2003.
[422] L. O. Arot Manguro, I. Ugi, P. Lemmen, R. Hermann, "Flavonol glycosides of Warburgia ugandensis leaves," Phytochemistry, vol. 64 no. 4, pp. 891-896, DOI: 10.1016/S0031-9422(03)00374-1, 2003.
[423] A. A. Wube, F. Bucar, K. Asres, S. Gibbons, L. Rattray, S. L. Croft, "Antimalarial compounds from Kniphofia foliosa roots," Phytotherapy Research, vol. 19 no. 6, pp. 472-476, DOI: 10.1002/ptr.1635, 2005.
[424] A. A. Wube, F. Bucar, S. Gibbons, K. Asres, "Sesquiterpenes from Warburgia ugandensis and their antimycobacterial activity," Phytochemistry, vol. 66 no. 19, pp. 2309-2315, DOI: 10.1016/j.phytochem.2005.07.018, 2005.
[425] B. M. Abegaz, Y. Woldu, "Isoflavonoids from the roots of Salsola somalensis," Phytochemistry, vol. 30 no. 4, pp. 1281-1284, DOI: 10.1016/S0031-9422(00)95217-8, 1991.
[426] M. P. Germanò, R. Sanogo, M. Guglielmo, R. De Pasquale, G. Crisafi, G. Bisignano, "Effects of Pteleopsis suberosa extracts on experimental gastric ulcers and Helicobacter pylori growth," Journal of Ethnopharmacology, vol. 59 no. 3, pp. 167-172, DOI: 10.1016/s0378-8741(97)00109-8, 1998.
[427] R. Nimenibo–Uadia, "Control of hyperlipidaemia, hypercholesterolaemia and hyperketonaemia by aqueous extract of Dioscorea dumetorum tuber," Tropical Journal of Pharmaceutical Research, vol. 2 no. 1, pp. 183-189, DOI: 10.4314/tjpr.v2i1.14584, 2003.
[428] E. Dagne, M. Alemua, O. Sterner, "Flavonoids from Euclea divinorum," Bulletin of the Chemical Society of Ethiopia, vol. 7 no. 2, 1993.
[429] S. K. Adesina, O. Idowu, A. O. Ogundaini, H. Oladimeji, T. A. Olugbade, G. O. Onawunmi, M. Pais, "Antimicrobial constituents of the leaves of Acalypha wilkesiana and Acalypha hispida," Phytotherapy Research, vol. 14 no. 5, pp. 371-374, DOI: 10.1002/1099-1573(200008)14:5<371::AID-PTR625>3.0.CO;2-F, 2000.
[430] K. O. Akinyemi, O. Oladapo, C. E. Okwara, C. C. Ibe, K. A. Fasure, "Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity," BMC Complementary and Alternative Medicine, vol. 5, 2005.
[431] J. Gálvez, M. E. Crespo, J. Jiménez, A. Suárez, A. Zarzuelo, "Antidiarrhoeic activity of quercitrin in mice and rats," Journal of Pharmacy and Pharmacology, vol. 45 no. 2, pp. 157-159, DOI: 10.1111/j.2042-7158.1993.tb03706.x, 1993.
[432] J. B. Harborne, C. A. Williams, "Anthocyanins and other flavonoids," Natural Product Reports, vol. 18 no. 3, pp. 310-333, DOI: 10.1039/b006257j, 2001.
[433] L. Bennie, J. Coetzee, E. Malan, D. Ferreira, "(4→6)-coupled proteracacinidins and promelacacinidins from Acacia galpinii and Acacia caffra," Phytochemistry, vol. 60 no. 5, pp. 521-532, DOI: 10.1016/S0031-9422(02)00124-3, 2002.
[434] L. Bennie, J. Coetzee, E. Malan, D. Ferreira, "Structure and stereochemistry of dimeric proteracacinidins possessing the rare C-4(C) → C-5(D) interflavanyl linkage," Phytochemistry, vol. 59 no. 6, pp. 673-678, DOI: 10.1016/S0031-9422(02)00010-9, 2002.
[435] L. Bennie, E. Malan, J. Coetzee, D. Ferreira, "Structure and synthesis of ether-linked proteracacinidin and promelacacinidin proanthocyanidins from Acacia caffra," Phytochemistry, vol. 53 no. 7, pp. 785-793, DOI: 10.1016/s0031-9422(99)00618-4, 2000.
[436] O. A. Binutu, G. A. Cordell, "Constituents of Afzelia bella stem bark," Phytochemistry, vol. 56 no. 8, pp. 827-830, DOI: 10.1016/S0031-9422(01)00006-1, 2001.
[437] G. Bojase, C. C. W. Wanjala, R. R. T. Majinda, "Flavonoids from the stem bark of Bolusanthus speciosus," Phytochemistry, vol. 56 no. 8, pp. 837-841, DOI: 10.1016/S0031-9422(01)00009-7, 2001.
[438] C. Ito, M. Itoigawa, N. Kojima, H. T.-W. Tan, J. Takayasu, H. Tokuda, H. Nishino, H. Furukawa, "Cancer chemopreventive activity of rotenoids from Derris trifoliata.," Planta Medica, vol. 70 no. 6, pp. 585-588, DOI: 10.1055/s-2004-815447, 2004.
[439] A. Yenesew, J. T. Kiplagat, S. Derese, J. O. Midiwo, J. M. Kabaru, M. Heydenreich, M. G. Peter, "Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata," Phytochemistry, vol. 67 no. 10, pp. 988-991, DOI: 10.1016/j.phytochem.2006.01.002, 2006.
[440] A. Yenesew, E. K. Mushibe, M. Induli, S. Derese, J. O. Midiwo, J. M. Kabaru, M. Heydenreich, A. Koch, M. G. Peter, "7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoliata," Phytochemistry, vol. 66 no. 6, pp. 653-657, DOI: 10.1016/j.phytochem.2005.02.005, 2005.
[441] S. Ragusa, R. De Pasquale, M. Flores, M. P. Germanò, R. Sanogo, A. Rapisarda, "Micromorphological investigations on Entada africana Guill. et Perr. (Mimosaceae)," Farmaco, vol. 56 no. 5-7, pp. 361-363, DOI: 10.1016/S0014-827X(01)01052-7, 2001.
[442] R. Sanogo, M. P. Germanò, V. D'Angelo, M. Guglielmo, R. De Pasquale, "Antihepatotoxic properties of Entada africana (Mimosaceae)," Phytotherapy Research, vol. 12 no. 1, pp. S157-S159, DOI: 10.1002/(SICI)1099-1573(1998)12:1+<s157::aid-ptr282>3.0.co;2-h,>
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2018 Mary Gulumian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
The use of traditional herbal remedies as alternative medicine plays an important role in Africa since it forms part of primary health care for treatment of various medical conditions, including wounds. Although physiological levels of free radicals are essential to the healing process, they are known to partly contribute to wound chronicity when in excess. Consequently, antioxidant therapy has been shown to facilitate healing of such wounds. Also, a growing body of evidence suggests that, at least, part of the therapeutic value of herbals may be explained by their antioxidant activity. This paper reviews African herbal remedies with antioxidant activity with the aim of indicating potential resources for wound treatment. Firstly, herbals with identified antioxidant compounds and, secondly, herbals with proven antioxidant activity, but where the compound(s) responsible for the activity has not yet been identified, are listed. In the latter case it has been attempted to ascribe the activity to a compound known to be present in the plant family and/or species, where related activity has previously been documented for another genus of the species. Also, the tests employed to assess antioxidant activity and the potential caveats thereof during assessment are briefly commented on.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 National Institute for Occupational Health, Johannesburg, South Africa; Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
2 Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Pharmacology, University of Cape Coast, Cape Coast, Ghana
3 Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa